PGS. TS. PHAM CÔNG HÀ

TOÁN 더 HOA답․․ ÚNG DỤNG TRONG GIAO THÔNG VẬN TẢI

PGS. TS. PHAM CÔNG HÀ

TOÁN QUY HOACH ÚNG dụng trong giao thông vận tảl

NHÀ XUẤT BẢ̉ GIAO THÔNG VẬN TẢI HÀ NộI - 2007
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

LỜI NHÀ XUẤT BẢN

Cách đây hoon 20 năm, Nhà xuấl bản Giao thông vận tải đā cho ra mắt cuốn "Các phuơng pháp toán úng dụng trong Giao thông vận tải" cỉa tác giả TS. Lý Bách Chấn, cuốn sách dã dược đông đảo bạn đọc hoan nghênh. Dể dáp îng yêtu cầu của nhiêúu cán bộ công tác trong ngành GTVT muốn tiếp cận một cách dề dàng hoon với các phương pháp toán quy hoạh; các nghiên cía sinh, học viên cao học và sinh viên năm cuối đang làm luận án và luận văn tốt nghiệp, chuing tôi tiếp luc xuấl bản cuốn "Toán quy hoạch úng dụng trong Giao thông vận tải" do PGS.TS. Pham Công Hà biên soan.

Là tài liệu dành cho những người khóng chuyên toán, cuốn sách trình bày nhãng kiến thúc toán hẹc bằng ngôn ngũ phoỏ cập, gắn liên với y nghãa thutcc tế thuộc các lĩnh vưc GTVT. Các ví dụ dơn giản dược giới thiệu trong cuốn sách này là rấ bố ich, có tác dụng gộ ý cho người dọc cách hự̛̣ng hóa những vấn đề mà minh quıan tâm dıới dạng các mô hình toán học tương líng, hay nói cách khác là phát biểt bài toán mọt cách tường minh. Phát biểu bài toán "díng que cách" là muc đích cao nhất cỉa những ngıơoi không chuyên toán muốn áp dung toán học dể giải quyết
những vấn đề thuộc lĩnh vực chuyên môn của minh - diều mà những nguời chuyên toán thường rất laing túng.

Các dạng toán quy hoach thuộc lớp các bài toán tốl ialu, nghĩa là phải tìm ra phương án thỏa mãn hàm muc tiêu, đông thời đáp ứng đầy đủ các điêu kiẹn ràng buộc nào đó. Các bài toán thuộc mô hình Quy hoạch Tuyến tính và Quy hoạch Đọng có phạm vi îng dụng khá rộng rãi trong GTVT. Trong khuôn khổ cuốn sách này, nhuĩng phương pháp toán sau đây dược giới thiệu cùng ban dọc:

- Quy hoạch Tuyến tinh dạng Tổng quát và bài toán Đối ngầu của nó;
- Bài toán Phân phốl, một dạng riêng của quy hoạch tuyến tính;
- Bài toán Vận tải, một tritờng hợp riêng của bài toán Phân phối
- Phưong pháp Quy hoach Động;
- Phuong pháp Lạp trình giải bài toán trên máy tính.

Để tiếp cân với nhĩng phutơng pháp trên, bạn dọc cần chuẩn bị đôi chút nhüng kiến thức tối thiểu về Dại số tuyén tính, các phuơng pháp Tối tru mang và Lâp trình cho máy tinh điện tủ. Các tài liệu tham khảo ở cuối cuốn sách này sê giúp bạn tra cúu khi cần thiết.

Chúc ban doc thành cong.
Nhà xuất bản Giao thông vận tải
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 4

Chương I

BÀI TOÁN QUY HOACH TUYẾN TÍNH DÅG TỔNG QUÁT

1.1. LÀM QUEN VỚI BÀI TOÁN QHTT DẠNG TỔNG QUÁT

1.1.1. Bài toán "Khẩu phẩn ăn"

Đây là bài toán hay, có thể coi nó như là "khuôn mẩu" của bài toán Quy hoạch tuyén tính dạng tổng quát (từ đây gọi tắt là bài toán QHTT). Nghiên cứu bài toán "Khẩu phần ān" sē giúp ta dễ dàng hình dung được bài toán QHTT: cách đặt vấn đề, cách lượng hóa các yếu tố, cách mô tả bài toán bằng ngôn ngữ toán học.

Bài toán có nội dung như sau:
Tại trạm Điều dưỡng, một nhóm bệnh nhân được điều trị cùng một chế độ dinh dưỡng (chữa bệnh bằng ăn uống). Mổi ngày nhóm này cần:

- Về khối lượng là 24 kg thực phẩm.
- Về chất lượng:

Chất A: không dưới 250 g ;
Chất B : không dưới 170 g ;
Chất C (độc tố): không vượt quá 30 g .
Hôm nay, người ta chọn mua 4 loại thực phẩm. Hàm lượng các chất có trong 1 kg thực phẩm như bảng (1.1).

Bảng 1.1.

Thực phẩm	Hàm lượng các chā́t (g) trong $\mathbf{1} \mathbf{~ k g}$		
	A	B	C
Thịt bò	20	5	0,5
Cá hổi	15	8	0
Rau cải	5	2	2
Mi sợi	10	25	0

Thời gian chế biến trong nhà bếp phụ thuộc vào thời gian chế biến mì sợi: cứ mổi kg mì sợi cần 15 phút.

Vấn đề đặt ra là: Hãy xác định khối lượng thực phẩm sẽ mua hôm nay, sao cho số tiền mua là ít nhất, đồng thời thoả mãn tất cả các yêu cầu đã đặt ra. Biết rằng giá mua 1 kg thực phẩm như sau:

Thịt bò 2 USD/kg;
Cá hồi 2.5 USD $/ \mathrm{kg}$:
Rau cải 0,8 USD/kg;
Mì sợi 1,5 USD/kg.
Mò tả bài toán bằng ngôn ngũ toán học:
Gọi khối lượng thịt bò, cá hồi, rau cải và mì sợi cần mua tương ứng là $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$ và $\mathrm{x}_{4}(\mathrm{~kg})$;

Gọi tổng số tiền mua thực phẩm là Z (USD),

$$
\begin{equation*}
\mathrm{Z}=2 \mathrm{x}_{1}+2,5 \mathrm{x}_{2}+0,8 \mathrm{x}_{3}+1.5 \mathrm{x}_{4} \tag{1}
\end{equation*}
$$

Hãy tìm $x_{1}, x_{2}, x_{3}, x_{4}$ sao cho Z_{1} nhỏ nhất, đổng thời thoả mãn các yêu cầu sau đây:
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 6

Đủ khối lượng
$\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}=24 \mathrm{~kg}$
Đảm bảo chất A $20 \mathrm{x}_{1}+15 \mathrm{x}_{2}+5 \mathrm{x}_{3}+10 \mathrm{x}_{4} \geq 250 \mathrm{~g}$
Đảm bảo chất B $5 \mathrm{x}_{1}+8 \mathrm{x}_{2}+2 \mathrm{x}_{3}+25 \mathrm{x}_{4} \geq 170 \mathrm{~g}$
Đảm bảo chất $\mathrm{C} \quad 0,5 \mathrm{x}_{1}+2 \mathrm{x}_{3} \leq 30 \mathrm{~g}$
Đảm bảo thời gian $\quad 15 \mathrm{x}_{4} \leq 150$ phút
Nhận xét về bài toán:
a. Nếu cho Z một giá trị xác định thì (1) trở thành đẳng thức, lúc đó, việc tìm giá trị $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}$ chỉ là việc giải hệ bất phương trình mà thôi. Nhưng ở đây Z không bị khống chế bởi giá trị nào cả, nó chỉ cần đạt giá trị nhỏ nhất. Z được gọi là Hàm muc tiêu.
b. Mục tiêu đật ra của bài toán là số tiền mua thực phẩm ít nhất, song nếu chỉ có vậy thôi thì ta xác định được ngay, rằng giá trị các ẩn đều bằng 0 , nghĩa là không mua gì hết. Chính các hệ thức (2), (3), (4), (5), (6) đã chỉ ra các điều kiện bắt buộc phải thoả mãn khi xác định giá trị các ẩn. Các hệ thức đó được gọi là Hệ các điều kiện ràng buộc (gọi tắt là hệ ràng buộc).

Về nguyên tắc, có thể bổ sung vào bài toán nhiều yêu cầu nữa (tùy tình hình thực tê), mổi yêu cầu được thể hiện bằng một đẳng thức hoặc bất đẳng thức.
c. Trong hệ ràng buộc của bài toán này tồn tại đẳng thức (dấu $=$), bất đẳng thức không nhỏ hơn (dấu \geq), bất đẳng thức không lớn hơn (dấu \leq), song vè̀ nguyên tắc không nhất thiết phải có cả 3 loại hệ thức đó (thậm chí chỉ có 1 loại hệ thức).
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012
d. Đơn vị đo của hàm mục tiêu là USD, của hệ ràng buộc thì có cả kilogam, gam, phút, song có điều mổi hệ thức chỉ sử dụng 1 đơn vị đo.
e. Còn một điều kiện nữa mà nghiểm nhiên phải được thoả mãn để bài toán có nghīa, đó là giá trị các ẩn không âm ($\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4} \geq 0$). Đây là điêu kiện tất yếu.

Giải bài toán "Khẩu phần ăn" ở trên sẽ cho lời giải tối uru nhu sau:

Thịt bò mua : $\quad x_{1}=7,21 \mathrm{~kg} ;$
Cá hồi : $x_{2}=0$ (không mua);
Rau cải mua : $\quad x_{3}=12,42 \mathrm{~kg}$
Mì sợi mua : $\quad X_{4}=4,37 \mathrm{~kg}$
Số tiền mua thực phẩm: 30,91 USD.
Phương án mua thực phẩm trên đây thỏa mãn yêu cầu về khối lượng và chất lượng, đổng thời số tiền mua là nhỏ nhất.

1.1.2. Bài toán thời gian thi công ngắn nhất

Để đảm bảo hoàn thành kế hoạch, đơn vị sửa chữa và bảo dưỡng đường bộ A cần gấp rút hoàn thành 50 km sơn kẻ vạch mạat đường, trong đó số km đường được sơn ke vạch của đường cấp I không nhỏ hơn 20% tổng chiều dài được sơn kẻ vạch của dường cấp II và III.

Đơn vị A chỉ có 1 dây chuyền (người, máy) dể làm việc này. Trong khi thời gian để hoàn thành một km đường cấp I. Il và III tương ứng là 12 ngày, 8 ngày và 6 ngày.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

Định mức tiền sơn cho 1 km đường cấp I, II, và III tương ứng là 30,20 và 15 triệu đồng, trong khi kinh phí dành cho công việc này trong thời gian tới chỉ còn 1200 triệu đồng.

Hãy xác định chiều dài sơn kẻ vạch cho mối cấp đường sao cho tổng thời gian thực hiện là ngắn nhất, đồng thời thoả mãn kinh phí mua sơn.

Gọi $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$ là chiều dài (km) dự định thực hiện cho mổi cấp đường. Khi đó:

Mục tiĉu thời gian: $Z=12 x_{1}+8 x_{2}+6 x_{3}-\operatorname{Min}$ (ngày)
Yêu cầu khối lượng : $\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}=50(\mathrm{~km})$
Yêu cầu chủng loại : $0,2\left(x_{2}+x_{3}\right) \leq x_{1}(k m)$
Yêu cầu kinh phí : $30 \mathrm{x}_{1}+20 \mathrm{x}_{2}+15 \mathrm{x}_{3} \leq 1200$ (tr.d)
Điều kiện tất yếu : $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq 0$.
Giải bài toán này ta sê có phutơng án tối lat sau:
Đường cấp I : thực hiện $8,33 \mathrm{~km}$
Đường cấp III : thực hiện $41,67 \mathrm{~km}$
Đường cấp II : để lại làm sau
Tổng thời gian thực hiện : $\quad 350$ ngày

1.1.3. Bài toán vận chuyển cát trên sông

Một doanh nghiệp vận tải sông nhận vận chuyển 180 ngàn mét khối cát từ 3 mỏ cál I, II, III về cảng A, trong đó mó III chỉ có khả nảng cung cấp không quá 50 ngàn khối.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT $\underset{9}{2012}$

Chi phí bốc xếp 1 ngàn khối cát ở các mỏ I, II và III lần lượt là 3 triệu, 2 triệu và 1 triệu đồng. Tổng kinh phí bốc xếp theo Dự toán được duyệt là 400 triệu đồng.

Tỷ lệ cát hao hụt khi lấy cát ở các mỏ I, II và III tương ứng là $0,1 \%, 0,1 \%$ và $0,2 \%$. Định mức hao hụt cho toàn bộ số lượng cát vận chuyển theo Dự toán không quá $0,4 \%$.

Hãy xác định số lượng cát lấy ở từng mỏ sao cho đáp ưng được các yêu cầu trên, đồng thời có tổng Tấn. Km vận chuyển là nhỏ nhất, biết rằng cự ly vận chuyển từ các mỏ đó về cảng A lần lượt là $4500 \mathrm{~m}, 6000 \mathrm{~m}$ và 3200 m .

Gọi x_{1}, x_{2}, x_{3}, là số lượng cát ($1000 \mathrm{~m}^{3}$) lấy ở các mỏ I, II và III. Khi đó:

- Đáp ứng mục tiêu Tấn. Km nhỏ nhất:

$$
Z=4500 x_{1}+6000 x_{2}+3200 x_{3}-\text { Min }
$$

- Đáp ứng yêu cầu về tổng số lượng cát:

$$
\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}=180
$$

- Đáp ứng khả nāng của mỏ III:

$$
x_{3} \leq 50
$$

- Đáp ứng chi phí bốc xếp:

$$
3 x_{1}+2 x_{2}+x_{3} \leq 400
$$

- Đáp ứng yêu cầu về hao hụt:

$$
0,1 \mathrm{x}_{1}+0,1 \mathrm{x}_{2}+0.2 \mathrm{x}_{3} \leq 0,4\left(\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}\right)
$$

Từ đó bài toán có mô hình toán học như sau:
Tim $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$ thoả mãn hàm mục tiêu:

$$
Z=4500 x_{1}+6000 x_{2}+3200 x_{3}-\operatorname{Min}
$$

127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 10

Đồng thời thoả mãn các điều kiện:

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=180 \\
& x_{3} \leq 50 \\
& 3 x_{1}+2 x_{2}+x_{3} \leq 400 \\
& 0,3 x_{1}+0,3 x_{2}+0,2 x_{3} \geq 0 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

Giải bài toán này ta sê có phương án tối tat:
Lấy ở mỏ I: $x_{1}=90$ ngàn m^{3}
Láy ở mỏ II: $\mathrm{x}_{2}=40$ ngàn m^{3}
Lấy ở mỏ III: $\mathrm{x}_{\mathrm{s}}=50$ ngàn m^{3}
T. km vận chuyển của phương án: $\mathrm{Z}=805.000 \mathrm{Tkm}$.

1.1.4. Bài toán phân bổ khối lượng thi công đường

Tổng Công ty xây dựng GTVT có 3 Công ty thành viên. Do trình dộ cơ sở vật chất kỹ thuật khác nhau, năng suất lao động khác nhau, dẫn tới đơn giá tiền lương ở 3 Công ty này cũng khác nhau. Vừa qua, tổng Công ty trúng thầu thi công 100 km dường.

Vấn đề phải giải quyết là: Phân bổ cho Công ty nào bao nhiêu km đường để tổng chi phí tiền lương là thấp nhất, biết rằng:

- Dơn giá tiền lương (1000 USD/km) của 3 Công ty I, II, III lần łượt là: $\mathrm{C}_{1}=250 ; \mathrm{C}_{2}=120 ; \mathrm{C}_{3}=300$;
- Chi phí tiền lương của Công ty I không quá tổng chi phí tiền lương cho 2 Công ly II và III.
- Thời gian thi công của Công ty II không được vượt quá 12 tháng, trong khi mổi tháng Công ty này chỉ có thể thực hiện được 2 km .
- Do nguồn điện khó khăn, tổng điện năng mà 3 Công ty sử dụng không được vượt quá 1800 đơn vị, trong khi đó mức tiêu thụ điện nảng (đ.v điện nãng/lkm) của 3 Công ty lần lượt là $15 \mathrm{dv}, 25 \mathrm{dv}$ và 10 dv .

Gọi $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$ là khối lượng (km đường) dự định giao cho 3 Công ty I, II, III thực hiện. Khi đó:

- Mục tiêu tổng chi phí tiền lương nhỏ nhất:

$$
Z=250 x_{1}+120 x_{2}+300 x_{3}-\operatorname{Min}
$$

- Điều kiện về tổng khối lượng thi công:

$$
\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}=100
$$

- Điều kiện tiền lương của Công ty I

$$
250 x_{1}-120 x_{2}-300 x_{3} \leq 0
$$

- Điều kiện về thời gian:

$$
2 x_{2} \leq 12
$$

- Điều kiện về điện năng;

$$
15 x_{1}+25 x_{2}+10 x_{3} \leq 1800
$$

Bài toán dược biểl diễn bằng mô hinh toán học sau:
Hãy xác dịnh x_{1}, x_{2}, x_{2} sao cho đạt mục tiêu:

$$
Z=250 x_{1}+120 x_{2}+300 x_{3}-\operatorname{Min}
$$

Đồng thời thoả mãn các điều kiện:
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=100 \\
& 250 x_{1}-120 x_{2}-300 x_{3} \leq 0 \\
& 2 x_{2} \leq 12 \\
& 15 x_{1}+25 x_{2}+10 x_{3} \leq 1800 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

Giải bài toán này ta có phutơng án tối uat:
Công ty I thực hiện: $52,58 \mathrm{~km}$
Công ty II thực hiẹn: 6 km
Cong ty III thực hiện: 41.42 km
Tổng chi phí tiền lương nhỏ nhất là: 26.290.910 USD.

1.2. MỘT SỐ KHÁI NIỆM VỀ BÀI TOÁN QHTT DẠNG TỔNG QUÁT

1.2.1. Mô hình tọán học

Mô hình toán học của Bài toán Quy hoạch tuyến tính dạng tổng quát (từ đây gọi tắt là bài toán QHTT) gồm Hàm mục tiĉu tiĉ́n tới Max hoạc Min; Hệ các điều kiện ràng buộc gồm các bất đẳng thức và đẳng thức; Điều kiện tấl yếu.

Giải bài toán QHTT có nghĩa là xác định các giá trị X_{1}, $\mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ sao cho thóa mãn các điều kiện ràng buộc và điều kiện tất yếu, đồng thời đáp ứng yều cầu của hàm mục tiêu.

Hàm mục tiêu có dạng:

$$
\left.Z=C_{1} x_{1}+C_{2} x_{2}+\ldots+C_{n} x_{n}-\text { Cực trị (Max hoạc } \operatorname{Min}\right)(1.1)
$$

Các điều kiện ràng buộc:

$$
\begin{align*}
& a_{1,1} x_{1}+a_{1.2} x_{2}+\ldots a_{1}, x_{n} x_{n} \\
& a_{2,1} x_{1}+a_{2.2} x_{2}+\ldots b_{1} \\
& \ldots \tag{1.2}\\
& a_{2 \cdot n} x_{n} \quad \because b_{2} \\
& a_{m .1} x_{1}+a_{m, 2} x_{2}+\ldots a_{m \cdot n} x_{n} \square b_{m} \\
& \quad x_{1}, x_{2} \ldots x_{n} \geq 0 \tag{1.3}
\end{align*}
$$

Nguời ta gọi:
(1.1) là hàm mục tiêu.
(1.2) là hệ bất phương trình ràng buộc (hệ ràng buộc);
(1.3) là điều kiện tất yếu.

Trong đó:
$x_{\mathrm{J}}(\mathrm{j}=1 . . \mathrm{n})$ là giá trị các biến;
Z là giá trị hàm mục tiêu;
C_{j} là các hệ số hàm mục tiêu (hằng số);
$\mathrm{b}_{\mathrm{i}}(\mathrm{i}=1 . . \mathrm{m})$ là các số hạng tự do (hằng số);
a_{ij} là các hẹ̉ số ở vế trái của hệ ràng buộc (hằng số);
là dấu của hệ thức ràng buộc $(=, \geq, \leq)$.
Chí ý:
a. Khi đặt bài toán, chớ nhầm lẩn hàm mục tiêu với điểu kiện ràng buộc. Giá trị hàm mục tiêu Z là giá trị phải tìm (phụ thuộc x_{J}). Nếu cho Z một giá trị xác định thì đó chỉ là bài toán giải hệ bất phương trình thông thường.
b. Cần bố trí sao cho vế phải của hệ ràng buộc (b_{i}) là hằng số (các biến nằm ở vế trái).
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 14
c. Bài toán có thể có 1 nghiệm duy nhất, vô nghiệm hoạ̉c vô số nghiệm (vấn đề này sẽ lần lượt đề cập đến).

1.2.2. Biểu diễn bài toán dưới dạng ma trận

Gọi X^{*} là véc tơ giá trị của các ẩn, B^{*} là véc tơ giá trị của các số hạng tự do, C^{*} là véc tơ giá trị các hệ số của hàm mục tiêu:

$$
\mathrm{X}^{*}=\left[\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2} \\
\ldots . \\
\mathrm{x}_{\mathrm{n}}
\end{array}\right]
$$

$$
B^{*}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
\ldots \\
b_{n}
\end{array}\right]
$$

$$
C^{*}=\left[\begin{array}{l}
c_{1} \\
c_{2} \\
\ldots \\
c_{n}
\end{array}\right]
$$

Gọi A^{*} là ma trận các hệ số của hệ ràng buộc:

$$
A^{*}=\left[\begin{array}{llll}
a_{1,1} & a_{1,2} & \ldots & a_{1, n} \\
a_{2,1} & a_{2.2} & \ldots & a_{2, n} \\
\ldots & & & \\
a_{m,} & a_{m .2} & \ldots & a_{m, n}
\end{array}\right]
$$

Lúc đó, bài toán được phát biểu như sau:
Tìm véc tơ X^{*} sao cho:

$$
\mathrm{Z}=\mathrm{C}^{*} \mathrm{X}^{*}-\text { cực trị (Max hoạc Min) }
$$

Và thoả mãn điều kiện:

$$
\begin{aligned}
& A^{*} X^{*}-B^{*}(\perp \text { là dấu của } \mathrm{B} Đ T) \\
& X^{*} \geq 0
\end{aligned}
$$

Ma trận don vị cáp m : Đó là ma trận vuông có m hàng
và m cột, trong đó các phần tử trên đường chéo chính đểu bằng 1 , còn các phần tử khác đều bằng 0 . Ví dụ ma trận đơn vị cấp 2 và cấp 3 .

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Đôi khi vị trí của các cột trong ma trận đơn vị bị đảo lộn, nhưng ta vẫn có thể nhận rả nó nếu như trên mỗi cột và trên mổi hàng chỉ có 1 phần tử bằng 1 , còn lại là bằng 0 . Ví dụ:

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Ma trận cấp 4 trên đây là một ma trận đơn vị. Nếu (chỉ nếu thôi) đổi vị trí các cột ta sẽ có hình ảnh quen thuộc là một dãy số 1 trên đường chéo chính.

Trong ma trận chữ nhật cấp m.n ($\mathrm{m} \leq \mathrm{n}$) cũng có thể chứa ma trận dơn vị cấp m. Ví dụ:

$$
\left[\begin{array}{lllll}
3 & 0 & 2 & 1 & 0 \\
1 & 1 & 4 & 0 & 0 \\
0 & 0 & 7 & 0 & 1
\end{array}\right]
$$

Các cột thứ 2 , thứ 4 và thứ 5 tạo thành ma trận đơn vị cấp 3.

Ma trận hệ ràng buộc mở rộng: Nếu bổ sung véc tơ cột B^{*} vào làm cột số $0(\mathrm{j}=0)$ của ma trận hệ ràng buộc, ta sẽ có ma trận Hệ ràng buộc mở rộng:

$$
\left[\begin{array}{llll}
a_{1,0} & a_{1,1} & a_{1,2} \ldots & a_{1, n} \\
a_{2,0} & a_{2,1} & a_{2,2} \ldots . & a_{2, n} \\
\ldots & & & \\
a_{m, 0} & a_{m, 1} & a_{m, 2} & \ldots \\
a_{m, n}
\end{array}\right]
$$

Trong đó: $\mathrm{a}_{\mathrm{i}, \mathrm{l}}=\mathrm{b}_{\mathrm{i}}(\mathrm{i}=1 . . \mathrm{m})$.

1.2.3. Các phương án của bài toán QHTT

* Phương án: Người ta gọi một tập hợp giá trị $\mathrm{X}^{*} \mathrm{j}$ là một phương án (hoạc lời giải). Phương án đó có thế thoả mãn tất cả hoặc một vài điều kiện, cūng có thể không thoả mãn điều kiện nào. Đương nhiên, số lượng phương án là vô cùng.
* Phương án tối uu (hay lời giải tối ưu - nghiệm): Là phương án thoả mãn hàm mục tiêu, hệ ràng buộc và điều kiện tất yếu. Bài toán có thể có 1 hoạac nhiều phương án tối ưu. Các phương án tối ưu của cùng bài toán chỉ khác nhau về giá trị các biến x_{j} nhưng cùng chung giá trị hàm mục tiêu Z .
* Phương án chấp nhận được: Là những phương án thoả mãn hệ ràng buộc và điều kiện tất yếu. Có vô số phương án chấp nhận được. phương án tối ưu nằm trong số đó.
* Phương án tựa: Hệ ràng buộc (1.2) và điều kiện tất yếu (1.3) mô tả một tập hợ lồi trong không gian n chiều. Mỗi phần tử thuộc tập hợp này là một phương án chấp nhận được. Có vô số phần tử như vậy.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

Người ta dã chứng minh rằng, nếu bài toán $Q H T T$ có phutơng án tô̂i tau (có nghiệm) thi phutơng án tô̂i tau là một dỉnh biên hoạc vô số các điểm thuộc đoạn thẳng nối 2 dỉnh biên cria tập hợp lôi đó.

Mặt khác, số dỉnh biên của tập hợp lồi là hữu hạn, vì vậy có thể tìm phương án tối ưu trong số các đỉnh biên mà không cần phải tìm kiếm trong toàn bộ tập hợp gồm vô số điểm.

Phương án ứng với các đỉnh biên gọi là phương án tựa, phương án tối ưu nằm trong số đó.

1.2.4. Nghiệm của bài toán QHTT hai biến

Chúng ta hãy xét bài toán mà hệ ràng buộc và điều kiện tất yếu tạo nên tập hợp lổi trong khồng gian 2 chiều (mặt phẳng):

Tìm x_{1} và x_{2} thoả măn:
Hàm mục tiêu $\mathrm{Z}=3 \mathrm{x}_{1}+\mathrm{x}_{2}-\mathrm{Max}$ (1)
Điều kiện ràng buộc:

$$
\left.\begin{array}{ll}
\text { I/ } & x_{2} \leq 6 \\
\text { II/ } & -3 x_{1}+x_{2} \leq 1 \\
\text { III/ } & \frac{2}{3} x_{1}+x_{2} \geq 4 \\
\text { IV/ } & 5 x_{1}-3 x_{2} \leq 15 \\
\text { V/ } & 15 x_{1}+8 x_{2} \leq 120 \tag{3}
\end{array}\right\}
$$

Điều kiện tát yếu: $\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$
127.0.0.1gdownloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

Hình 1.1: Tập hợp lồi trong không gian 2 chiều.
Các đường thẳng thuộc hệ ràng buộc (2) tạo thành hình đa giác ABCDE (trên hệ toạ độ $\left[\begin{array}{lll}\mathrm{x}_{1} & 0 & \mathrm{x}_{2}\end{array}\right]$ ta chỉ chú ý đến góc phần tử thứ nhất, vì chỉ ở đây thì x_{1} và x_{2} mới không âm). Tất cả mọi điểm thuộc đa giác đó đều là những phương án chấp nhận được. Tuy nhiên phương án tối ưu thì nằm trong số các đỉnh của đa giác.

Hàm mục tiêu là một họ các đường thẳng trong góc phần tư thứ nhất, song song với đường thẳng (*) in đậm. Khi tịnh tiến đường thẳng này trong góc phần tư thứ

127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

nhất, nó sẽ lần lượt gạap các dỉnh để nhận giá trị Z tương úng. Cụ thể:

$$
\begin{array}{lll}
\text { Tại điểm } \mathrm{A}: \mathrm{x}_{1}=5 / 3 ; & x_{2}=6 ; & Z=11 \\
\text { Tại điểm } \mathrm{B}: \mathrm{x}_{1}=9 / 11 ; & \mathrm{x}_{2}=38 / 11 ; & \mathrm{Z}=65 / 11 \\
\text { Tại điểm } \mathrm{C}: \mathrm{x}_{1}=27 / 7 ; & \mathrm{x}_{2}=54 / 7 ; & \mathrm{Z}=135 / 7 \\
\text { Taai điểm } \mathrm{D}: \mathrm{x}_{1}=96 / 17 ; & \mathrm{x}_{2}=75 / 17 ; & \mathrm{Z}=363 / 17 \\
\text { Tại điểm } \mathrm{E}: \mathrm{x}_{1}=24 / 5 ; & \mathrm{x}_{2}=6 ; & Z=102 / 7
\end{array}
$$

Như vậy tại điểm D , hàm mục tiêu đạt cực đại. Phương án tối ưu là:

$$
x_{1}=96 / 17 ; \quad x_{2}=75 / 17 ; \quad Z=363 / 17
$$

Với những bài toán có từ 3 ẩn trở lên thì không thể mô tả nó trên toạ độ vuông góc, và do đó không thể giải nó bằng phương pháp đồ thị.

1.3. GIẢI BÀl TOÁN QHTT BÀ̀NG PHƯƠNG PHÁP ĐON HìNH

1.3.1. Dạng chinh tắc của bài toán QHTT

Phương pháp đơn hình giải bài toán QHTT với điều kiện mô hình bài toán phải được biểu diển dưới dạng chính tắc. Các mô hình không chính tắc đều có thể dưa về dạng chính tắc. Mô hình chính tắc như sau:

Tìm các giá trị $\mathrm{x}_{\mathrm{j}}(\mathrm{j}=1 . . n)$ thở mãn:

$$
\begin{equation*}
\text { Hàm mục tièu } Z=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{11} x_{n}-\text { Min } \tag{1.4}
\end{equation*}
$$

127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 20

Điều kiện ràng buộc:
$\left.\begin{array}{ll}a_{1,1} x_{1}+a_{1.2} x_{2}+\ldots a_{1 . n} x_{n} & =b_{1} \\ a_{2.1} x_{1}+a_{2.2} x_{2}+\ldots a_{2 . n} x_{n} & =b_{2} \\ \ldots & \\ a_{m .1} x_{1}+a_{m, 2} x_{2}+\ldots a_{2, . n} x_{n} & =b_{m}\end{array}\right\}$

Điều kiện tất yếu: $x_{1}, x_{2} \ldots x_{n} \geq 0$.
Mô hình chính tắc có các đặc điểm:
a. Hàm mục tiêu đạt giá trị nhỏ nhất (Z - Min);
b. Hệ ràng buộc là những phương trình mà vế phải là hằng số (số hạng tự do);
c. Các số hạng tự do $b_{j} \geq 0$;
d. Các giá trị $\mathrm{x}_{\mathrm{j}} \geq 0$.

1.3.2. Đưa bài toán về dạng chính tắc

a. Truờng hợp hàm muc tiêu Z tiến tới Max:

Ta chỉ việc giải bàj toán với hàm mục tiêu là Q trong đó $Q=-Z$, giữ nguyên hệ ràng buộc và điều kiện tất yếu. Sau khi có kết quả thì đổi dấu của Q sẽ có giá trị của hàm mục tiêu 7 .
b. Trường hựp hệ ràng buộc có bất dả̉ng thức dấu \leq :

Thay dấu không lớn hơn ($(\leq$) bằng dấu bằng ($=$), đồng thời thêm vào vế trái một ẩn nữa, ẩn này gọi là ẩn phu.

Ẩn phụ có hệ số ràng buộc là 1 , có hệ số ở hàm mục tiêu là 0 .
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

Ẩn phụ là ẩn có thật trong thực tế, song khi lập bài toán ta không cần xét đến nó, nghĩa là nó nhận giá trị bao nhiêu cūng không quan trọng.

Vi du: Bài toán có 3 ẩn chính là $\mathrm{x}_{1}, \mathrm{x}_{2}$ và x_{3}. Bất đẳng thức trong hệ ràng buộc là:

$$
2 x_{1}-4 x_{2}+3 x_{3} \leq 5
$$

Khi đưa về dạng chính tắc, ta thêm ẩn phụ x_{4} và biến bất đẳng thức thành đẩng thức:

$$
2 x_{1}-4 x_{2}+3 x_{3}+x_{4}=5
$$

c. Trường hợp hệ ràng buộc có bất đẳng thức dấu \geq :

Trước hết nhân 2 vế với -1 để đổi dấu \geq thành dấu \leq. Tiếp theo làm như trường hợp b .

Vidu:
Dạng không chính tắc: $15 \mathrm{x}_{1}+8 \mathrm{x}_{2}-10 \mathrm{x}_{3} \geq 7$
Đổi dấu của bất đẩng thức: $-15 \mathrm{x}_{1}-8 \mathrm{x}_{2}+10 \mathrm{x}_{3} \leq-7$
Thêm ẩn phụ để thành đẳng thức:

$$
-15 x_{1}-8 x_{2}+10 x_{3}+x_{4} \leq-7
$$

Làm cho vế phải không âm: $15 x_{1}+8 x_{2}-10 x_{3}-x_{4}=7$
d. Truờng hơp dã là đẳng thức:

- Giữ nguyên, nếu vế phải không âm.
- Nhân 2 vế với - 1 nếu vế phải âm.

Vi dụ: Đưa mô hình bài toán sau đây về dạng chính tắc:

$$
\left.\mathrm{Z}=120 \mathrm{x}_{1}+68 \mathrm{x}_{2}-75 \mathrm{x}_{3}-\text { Max } 0 \text { } \quad \begin{array}{rl}
8 \mathrm{x}_{1}-4 \mathrm{x}_{2}+5 \mathrm{x}_{3} & \leq 160 \\
5 \mathrm{x}_{1}+2 \mathrm{x}_{2}-\mathrm{x}_{3} & \geq 100 \\
\mathrm{x}_{1}+\mathrm{x}_{2} & =80
\end{array}\right]
$$

Đưa hàm mục tiêu về dạng chính tắc:

$$
Q=-120 x_{1}-68 x_{2}+75 x_{3}-\operatorname{Min}
$$

Với đẳng thức thứ nhất: thêm ẩn phụ x_{4} hệ số 1 :

$$
8 x_{1}-4 x_{2}+5 x_{3}+x_{4}=160
$$

Với bất đẳng thức thứ hai, trước hết đổi dấu BDT,

$$
-5 x_{1}-2 x_{2}+x_{3} \leq-100
$$

sau đó thêm ẩn phụ x_{5} để biến thành đẩng thức:

$$
-5 x_{1}-2 x_{2}+x_{3}+x_{5}=-100
$$

Cuối cùng làm cho vế phải không âm:

$$
5 x_{1}+2 x_{2}-x_{3}-x_{5}=100
$$

Bài toán ở dạng chính tắc sē là:

$$
\left.\begin{array}{rl}
\mathrm{Q}=-120 \mathrm{x}_{1}-68 \mathrm{x}_{2}+75 \mathrm{x}_{3}+0 . \mathrm{x}_{4}+0 . \mathrm{x}_{5}-\text { Min } \\
8 \mathrm{x}_{1}-4 \mathrm{x}_{2}+5 \mathrm{x}_{3}+\mathrm{x}_{4} & =160 \\
5 \mathrm{x}_{1}+2 \mathrm{x}_{2}-\mathrm{x}_{3}-\mathrm{x}_{5} & =100 \\
\mathrm{x}_{1}+\mathrm{x}_{2} & =80 \\
\mathrm{x}_{1}, \mathrm{x}_{2} \ldots \mathrm{x}_{5} \geq 0
\end{array}\right\}
$$

1.3.3. Tìm phương án tựa ban đầu

Chiến lược giải bài toán QHTT là:
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

- Đưa ra tiêu chuẩn tối ưu để đánh giá phương án (đã tối ư hay chura).
- Tìm một phương án tựa bất kỳ (gọi là phương án tựa ban đầu) rồi dựa vào tiêu chuẩn tối ưu để đánh giá nó.
- Nếu phương án tựa ban đầu không tối ưu thì áp dụng quy tắc hoàn thiện phương án đó (để tìm phương án tựa khác tốt hơn). Cứ như vậy cho đến khi tìm dược phương án đáp ứng tiêu chuẩn tối ưu.

Bằng cách này, người ta bỏ qua được nhiều phương án tựa để nhanh chông tiến đến phương án tối ưu.

Như vậy, việc đầu tiên là phải tìm dượ̛ một phương án tựa.

Phương án tuta là phương án mà mồi ẩn tóng với một cột của ma trận dơn vị nhận giá trị vế phải (nhớ rằng ở dạng chính tắc thì vế phải không âm).

$$
\text { Vidu: } \mathrm{A}^{*}=\left[\begin{array}{ccccc}
1 & -3 & 1 & 0 & 0 \\
0 & 2 & 0 & 1 & 0 \\
0 & 3 & 5 & 0 & 1
\end{array}\right] \quad \mathrm{B}^{*}=\left[\begin{array}{l}
15 \\
3 \\
7
\end{array}\right]
$$

Ma trận đơn vị gổm cột 1 , cột 4 và cộ̣ 5 . Vậy ta có phương án tựa là:

$$
\begin{aligned}
& x_{1}=15 \\
& x_{4}=3 \\
& x_{5}=7
\end{aligned}
$$

Phương án tựa ban đầu có m ấn nhận giá trị vế phải. Các 127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

ẩn của phương án tựa gọi là ẩn cơ bản. Các ẩn còn lại đều có giá trị bằng 0 , gọi là các ẩn tự do.

Rõ ràng là muốn có phương án tựa ban đầu thì trong ma trận hệ ràng buộc phải tồn tại ít nhất 1 ma trận đơn vị. Nếu không có thì phải thêm vào nó một số cột, sao cho xuất hiện ít nhất 1 ma trận đơn vị.

Vidu:

$$
\mathrm{A}^{*}=\left[\begin{array}{cccc}
4 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
15 & 0 & 10 & 5
\end{array}\right] \quad \mathrm{B}^{*}=\left[\begin{array}{l}
15 \\
12 \\
20
\end{array}\right]
$$

Trong A* chỉ có cột thứ hai là một cột của ma trận đơn vị cấp 3 . Cần phải thêm vào 2 cột nữa:

$$
\mathrm{A}^{* *}=\left[\begin{array}{llllll}
4 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
15 & 0 & 10 & 5 & 0 & 1
\end{array}\right] \quad \mathrm{B}^{* *}=\left[\begin{array}{c}
15 \\
12 \\
20
\end{array}\right]
$$

Thực ra, nếu nhìn kĩ thì cột thứ tư cūng là một cột thành phần của ma trận đơn vị - nếu ta chia cả 2 vế của hàng cuối cùng cho 5 . Từ đó chi cần thêm 1 cột nữa thôi, lúc dó:

$$
A^{* *}=\left[\begin{array}{lllll}
4 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
3 & 0 & 2 & 1 & 0
\end{array}\right] \quad B^{* *}=\left[\begin{array}{l}
15 \\
12 \\
4
\end{array}\right]
$$

Ẩn ứng với cộl thêm gọi là ẩn giả. Ẩn giả có hệ số ràng buộc bằng 1 , có hệ số hàm mục tiêu là M , đó là sơ dương lớn tuỳ ý.

Ẩn giả không có trong thực tế, việc đưa ẩn giả vào tính toán chỉ là "thủ pháp". Trong phương án tối ưu, nếu tồn tại ẩn giả có giá trị khác 0 thì bài toán đó được coi là vô nghiệm.

Vídu:
Ta có bài toán đã được đưa về dạng chính tác:

$$
\left.\begin{array}{ll}
\mathrm{Z}=25 \mathrm{x}_{1}+18 \mathrm{x}_{2}-46 \mathrm{x}_{3}+0 \mathrm{x}_{4}+0 \mathrm{x}_{5}-\operatorname{Min} \\
3 \mathrm{x}_{1}+\mathrm{x}_{2}+4 \mathrm{x}_{3}+\mathrm{x}_{4} & =15 \\
2 \mathrm{x}_{1}+6 \mathrm{x}_{3}-\mathrm{x}_{5} & =7 \\
8 \mathrm{x}_{1}+5 \mathrm{x}_{2}+7 \mathrm{x}_{3} & =48 \\
\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{5} \geq 0
\end{array}\right\}
$$

Trong đó x_{4} và x_{5} là các ẩn phụ. Lưu y y ẩn phụ x_{5} ở đẳng thức thứ hai vốn có hệ số là 1 , nhưng vì vế phải là âm (-7), dể biến nó thành dương thì phải nhân cả 2 vế với -1 .

Ma trận hệ ràng buộc và véc tợ vế phải:

$$
\left[\begin{array}{ccccc}
3 & 1 & 4 & 1 & 0 \\
2 & 0 & 6 & 0 & -1 \\
8 & 5 & 7 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{c}
15 \\
7 \\
48
\end{array}\right]
$$

Thêm vào ma trận hệ ràng buộc cột thứ 6 và cột thứ 7 để có ma trận đơn vị (như vậy cũng có nghĩa là thêm ẩn giả x_{6} và x_{7}) lúc đó ta có:

$$
\left[\begin{array}{lllllll}
3 & 1 & 4 & 1 & 0 & 0 & 0 \\
2 & 0 & 6 & 0 & -1 & 1 & 0 \\
8 & 5 & 7 & 0 & 0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{l}
15 \\
7 \\
48
\end{array}\right]
$$

127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

Hàm mục tiêu lúc này là:
$Z=25 x_{1}+18 x_{2}-46 x_{3}+0 x_{4}+0 x_{5}+M x_{6}+M x_{7}-M i n$
Trong đó M là số dương lớn tuỳ ý.
Càn cứ vào ma trận đơn vị nêu trên, ta có phương án tựa ban đầu như sau:

$$
\left.\begin{array}{l}
x_{4}=15 \\
x_{6}=7 \\
x_{7}=48
\end{array}\right\} \quad Z=7 \mathrm{M}+48 \mathrm{M}=55 \mathrm{M}
$$

Tóm lại, phương án tựa là phương án có m ẩn cơ bản nhận giá trị vế phải (không âm), mổi ẩn ứng với một cột của ma trận đơn vị cấp m.

Muốn tìm phương án tựa ban đầu, phải tìm ma trận đơn vị chứa trong ma trận hệ ràng buộc. Nếu không có ma trận đơn vị hoạ̣c thiếu các cột thành phần thì phải bổ sung thêm cột (cũng là bổ sung các ẩn giả) sao cho xuất hiện ma trận đơn vị̣.

Ẩn giả có hẹ̉ số trong hệ ràng buộc là l, có hệ số ở hàm mục tiêu là số dương lớn tuỳ ý (ký hiệu M).

1.3.4. Lập bảng đơn hình

Bảng đơn hình là một bảng số gồm nhiều khối, mồi khối ứng với một phương án tựa (đó cunng là một bước tính toán).

Bước I: Ghi chép nội dung phương án tựa ban đầu, các dữ liẹ̉u ban đầu của bài toán: $\mathrm{c}_{\mathrm{j}}, \mathrm{b}_{\mathrm{i}} \mathrm{a}_{1 \mathrm{y}}$, đồng thời ghi kết quả đánh giá phương án đó (đã tối ưu hay chưa).

Các bước tiếp theo: Nếu phương án ở bước trước chưa tối ưu thì áp dụng các quy tắc biến đởi để hoàn thiện nó, rồi ghi các giá trị mới vào khối này của bảng, ta có nội dung phương án mới với các giá trị b_{i} và $\mathrm{a}_{i j}$ mới.

Cứ như vậy cho đến bước có phương án tối ưu.
Giả sử ta có bài toán đã đưa về dạng chính tắc và đã xác lập được phươong án tựa ban đầu:

Hàm mục tiêu:

$$
\mathrm{Z}=\mathrm{C}_{1} \mathrm{x}_{1}+\mathrm{C}_{2} \mathrm{x}_{2}+\ldots+\mathrm{C}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}-\operatorname{Min}
$$

Hệ ràng buộc:

$$
a_{1,1} x_{1}+a_{1,2} x_{2}+\ldots . a_{1 \cdot n} x_{n}=b_{1}
$$

$$
a_{m, 1} x_{1}+a_{m, 2} x_{2}+\ldots \cdot a_{m \cdot n} x_{n}=b_{m}
$$

Điều kiện tất yếu: $x_{1}, x_{2} \ldots x_{n} \geq 0$.
Phương án ban đầu:

$$
\begin{aligned}
& x_{\mathrm{s}}=b_{\mathrm{i}} \\
& \mathrm{x}_{\mathrm{p}}=\mathrm{b}_{\mathrm{k}} \\
& \ldots \\
& \mathrm{x}_{\mathrm{r}}=\mathrm{b}_{\mathrm{l}}
\end{aligned}
$$

Giá trị hàm mục tiêu $Z=I^{*}$.
Các dữ liệu được trình bày trên bảng dơn hình như sau:

- Cột 1: ghi số thứ tự bước thực hiện.
- Cột 2: ghi chỉ số của man cơ bản. Các chỉ số này được 127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012
ký hiệu là e_{i} (ví dụ có 3 ẩn cơ bản là $\mathrm{x}_{2}, \mathrm{x}_{5}$ và x_{6}. Lúc đó $e_{1}=2 ; e_{2}=5, e_{3}=6$).
- Cột 3: ghi giá trị các hẹ̉ số hàm mục tiêu $\left(\mathrm{C}_{\mathrm{j}}\right)$ ứng với từng ẩn cơ bản. Các giá trị này được ký hiệu là G_{j} (ví dụ $\mathrm{C}_{2}=18 ; \mathrm{C}_{5}=0 ; \mathrm{C}_{6}=0$, lúc này ta có $\mathrm{G}_{1}=18 ; \mathrm{G}_{2}=0$; $\mathrm{G}_{3}=0$).
- Cột 4: ghi giá trị số hạng tự do $\left(\mathbf{b}_{\mathrm{i}}\right)$ ứng với từng ẩn cơ bản.

Các giá trị này được ký hiệu là T_{i} (ví dụ $\mathrm{b}_{2}=6 ; \mathrm{b}_{\mathrm{s}}=4$; $\mathrm{b}_{6}=15$. Lúc này ta có $\mathrm{T}_{1}=6 ; \mathrm{T}_{2}=4 ; \mathrm{T}_{3}=15$).

- Những chổ còn lại thì ghi như sau:
+ Hàng (a) ghi tên của tât cả các biến theo tuần tự $\mathrm{x}_{1}, \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{n}}$ (mổi tên l cột).
+ Hàng (b) ghi giá trị hàm mục tiêu tương ứng với mỗi biến đó.
+ Miền (c) gồm n cột và m hàng ghi toàn bộ giá trị các phần tử của ma trận ràng buộc ($\mathrm{a}_{\mathrm{i}, \mathrm{j}}$) tương ứng với x_{j}.
+ Hàng (d): ghi số kiểm tra Δ_{j} úng với mổi ẩn x_{j}. Chồ trống còn lại thì ghi giá trị hàm mục tiêu. (Số kiểm tra Δ, sẽ đề cập ở mục sau).

Bảng 1.2: Cấu trúc của bảng đơn hình

	Chi só	Giá trị hàm	Già trị só	X_{1}	x_{2}	\cdots	x_{n}
	co bàn $\boldsymbol{\theta}_{\mathbf{i}}$	co bản \mathbf{G}_{1}	tương ưng T_{1}	C_{1}	C_{2}	...	C_{n}
1	e_{1}	G,	T ${ }_{1}$	a_{11}	a_{12}	\ldots	$\mathrm{a}_{1 \text { n }}$
	e_{2}	G_{2}	T	a_{21}	a_{22}	\ldots	$a_{2 n}$
	\cdots	\cdots	\ldots	\ldots	\cdots
	e_{m}	G_{m}	T_{m}	$a_{m 1}$	$\mathrm{a}_{\mathrm{m} 2}$	\ldots	a_{mn}
	$Z=\sum_{i=1}^{m} G_{\mathbf{i}} T_{i}$			A_{1}	Δ_{2}	\ldots	Δ_{n}

(b)
(c)
(d)

Trong miền (c), từ cột thứ 5 trở di là các phần tử của ma trận hệ số ràng buộc cấp m.n.

Nếu đưa các phần tử T, của cột 4 vào ma trận đó thì ta có ma trận mở rộng cấp $\mathrm{m} .(\mathrm{n}+1)$. Các phần tử T_{i} của cột 4 được hiểu là các phần tử a_{i} ($(\mathrm{cột} 0)$.

Vi dụ: Ta có bài toán đã ở dạng chính tắc với
Hàm mục tiêu:

$$
Z=22 \mathrm{x}_{1}+60 \mathrm{x}_{2}-10 \mathrm{x}_{3}+6 \mathrm{x}_{4}+0 \mathrm{x}_{5}+\mathrm{Mx}_{6}+\mathrm{Mx} \mathrm{x}_{7}-\mathrm{Min}
$$

Hệ ràng buộc:

$$
\left.\begin{array}{ll}
-x_{1}+(2 / 3) x_{2}+x_{7} & =5 \\
2 x_{1}+x_{3}+x_{4}+x_{6} & =7 \\
3 x_{2}+4 x_{3}+2 x_{4}+x_{5} & =48
\end{array}\right]
$$

Điĉ̀u kiện tất yếu: $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{6} \geq 0$.

Phương án tựa ban đầu:

$$
\begin{aligned}
& x_{5}=48 \\
& x_{6}=7 \\
& x_{7}=5 \\
& x_{1}=x_{2}=x_{3}=x_{4}=0 .
\end{aligned}
$$

Giá trị hàm mục tiêu $\mathrm{Z}=7 \mathrm{M}+5 \mathrm{M}=12 \mathrm{M}$.
Bây giờ ta thể hiện bài toán đó trên bảng đơn hình với phương án ban đầu đã nêu trên tại bảng 1.3.

Báng 1.3

Bước	e,	G.	T.	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{3}
				22	60	-10	6	0	M	M
1	6	M	5	-1	$2 / 3$	0	0	0	1	0
	7	M	7	2	0	1	1	0	0	1
	5	0	48	0	3	4	2	1	0	0
		$=12$		M-22	(2/3) M-60	$\mathrm{M}+10$	M-6	0	0	0

(Chú ý: M là số dương lớn tuỳ ý).

1.3.5. Số kiểm tra và tiêu chuẩn tối ưu

a. Số kiểm tra: (kí hiệu Δ_{J}) là căn cứ để định ra tiêu chuấn tối ưu đối với một phương án.
$\Delta_{,}(\mathrm{j}=1 . . \mathrm{n})$ được tính cho từng cột cúa ma trận hệ số ràng buộc, công thức tính như sau:

$$
\begin{equation*}
\Delta_{j}=\sum_{i=1}^{m} G_{i} a_{i j}-C_{j}(j=1 . . n) \tag{1.7}
\end{equation*}
$$

Để cho dễ nhớ ta hiểu cách tính Δ_{j} ở công thức trên nhu sau:

Nhân véc tơ cột G_{j} với các phần tử trên cột j của ma trận hệ ràng buộc, lấy kết quả trừ đi C_{j} (đã được ghi ở phía trên cột j).

Vi dụ: Tính số kiểm tra của phương án được thể hiện ở bảng (1.3).

$$
\begin{aligned}
& \Delta_{1}=\left(\begin{array}{l}
M \\
M \\
0
\end{array}\right) \times\left(\begin{array}{l}
-1 \\
2 \\
0
\end{array}\right)-22=M-22 \\
& \Delta_{2}=\left(\begin{array}{l}
M \\
M \\
0
\end{array}\right) \times\left(\begin{array}{l}
2 / 3 \\
0 \\
3
\end{array}\right)-60=(2 / 3) M-60 \\
& \Delta_{3}=\left(\begin{array}{l}
M \\
M \\
0
\end{array}\right) \times\left(\begin{array}{l}
0 \\
1 \\
4
\end{array}\right)+10=M+10 \\
& \Delta_{4}=\left(\begin{array}{l}
M \\
M \\
0
\end{array}\right) \times\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)-6=M-6 \\
& \Delta_{5}=\left(\begin{array}{l}
M \\
M \\
0
\end{array}\right) \times\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)-0=0
\end{aligned}
$$

$$
\begin{aligned}
& \Delta_{6}=\left(\begin{array}{l}
\mathrm{M} \\
\mathrm{M} \\
0
\end{array}\right) \times\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)-\mathrm{M}=\mathrm{M}-\mathrm{M}=0 \\
& \Delta_{7}=\left(\begin{array}{l}
\mathrm{M} \\
\mathrm{M} \\
0
\end{array}\right) \times\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)-\mathrm{M}=\mathrm{M}-\mathrm{M}=0 .
\end{aligned}
$$

(Xem hàng dưới cùng của bảng 1.3).
b. Tiêu chuẩn tốl ta:

Tiĉu chuẩn tối ưu của bài toán QHTT được phát biểu nhu sau:

Phuơng án tối lat (hay lòi giải tối lat) của bài toán quy hoach tuyén tính là phương án có các số kiểm tra không ditong.

Tức là: $\Delta_{j} \leq 0$ với $j=1,2, \ldots, n$.
Phương án giới thiệu ở bảng (1.3) không phải là phương án tối ưu vì có số kiểm tra dương.

1.3.6. Hoàn thiện phương án

Một phương án ở bước $\mathrm{t}(\mathrm{t}=1,2 \ldots)$ dược trình bày trên bảng đơn hình nếu chưa tối ưu thì phải lập phương án mới và trình bày phương án mới đó ở bước $\mathbf{t}+1$.

Cần lưu ý rà̀ng, phương án đầu tiên đưa vào bảng đơn hình phải là phương án tựa (gọi là phương án tựa ban đẩu). Đương nhiên, đây là phương án có m ẩn cơ bản nhận giá trị 127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012
không âm. Các bước tiếp theo được lập theo quy tắc dưới đây sẽ cho ta toàn phương án tựa.

Nội dung lập một phương án mới gồm:

- Chọn một ẩn tự do để thay thế cho một ẩn cơ bản.
- Ghi lại giá trị e_{i} và G_{i} ứng với ẩn tự do được chọn đó.
- Lập lại toàn bộ ma trận mở rộng a_{ij} (các phần tử của cột T_{j} được coi là các phần tử $\mathrm{a}_{\mathrm{i}, 0}$ của ma trận mở rộng).
a. Ẩn tư do dươc chọn:
x_{s} là ẩn được chọn nếu $\Delta_{\mathrm{s}}=\operatorname{Max} \Delta_{\mathrm{j}}(\mathrm{j}=\mathrm{i} . . . \mathrm{n})$
b. Ẩn co bản bị loai:

Sau khi đã có ẩn được chọn x_{s}, ta xác định ẩn bị loại theo quy tắc:

Ẩn cơ bản nằm trên hàng k là ẩn bị loại nếu:

$$
\frac{T_{k}}{a_{\mathrm{ks}}}=\min \frac{\mathrm{T}_{\mathrm{i}}}{\mathrm{a}_{\mathrm{is}}}\left(\text { với các } \mathrm{a}_{\mathrm{is}} \geq 0\right) \text {. }
$$

Điều này có nghĩa là, thực hiện lần lượt các phép chia một phẩn tử trên cột T_{i} cho một phần tử của ma trận hệ ràng buộc thuộc cột s (phần tử này phải dương). Kết qủa nhỏ nhất ứng với hàng nào thì ẩn cơ bản thuộc hàng đó bị loại.

Vi dụ: Phương án ở bảng 1.3 là phương án tựa, nhưng không tối ưu. Ẩn cơ bản là $\mathrm{x}_{5}, \mathrm{x}_{6}$ và x_{7}.

Ẩn tự do được chọn để thay thế là x_{3} bởi vì $\Delta_{3}=5 \mathrm{M}+10$ là lớn nhất.

Chia từng phần tử của cột T_{i} cho các phần tử tương ứng ở cột $\mathrm{j}=3$:

$$
\begin{array}{ll}
\frac{\mathrm{T}_{1}}{\mathrm{a}_{1,3}}=\frac{48}{0} & \text { (bỏ qua) } \\
\frac{\mathrm{T}_{2}}{\mathrm{a}_{2,3}}=\frac{7}{1}=7 & \\
\frac{\mathrm{~T}_{3}}{\mathrm{a}_{3,3}}=\frac{5}{4} & \text { Đây là giá trị bé nhất. }
\end{array}
$$

Phép chia có giá trị bé nhất ứng với hàng thứ 3 . Như vậy ẩn bị loại nằm trên hàng thứ 3 , ứng với x_{7}.
c. Ghi lai phuơng án mới.

- Vì ẩn được chọn là x_{s} thay cho ẩn cơ bản bị loại ở hàng k nên giá trị c_{k} (chỉ số của ẩn cơ bản) lúc này là $\mathrm{e}_{\mathrm{k}}=\mathrm{s}$.
- Hệ số hàm mục tiêu G_{k} lúc này cũng phải thay đổi tương ứng $\mathrm{G}_{\mathrm{k}}=\mathrm{C}_{\mathrm{s}}$
- Toàn bộ các phẩn tử còn lại $\mathrm{a}_{\mathrm{ij}}(\mathrm{i}=1 . . \mathrm{m} ; \mathrm{j}=0 . . \mathrm{n})$ của ma trận mở rộng dược biến đổi như sau:

Người ta gọi cột ứng với ẩn được chọn là cột chinh (s), hàng ứng với ẩn bị loại là hàng chính (k), phần tử a_{ks} là phần tử chính.

Các phần tử mới nằm trên hàng chính:

$$
\begin{equation*}
\mathrm{a}_{\mathrm{kj}}^{\prime}=\frac{\mathrm{a}_{\mathrm{ki}}}{\mathrm{a}_{\mathrm{ks}}}(\mathrm{j}=0,1 \ldots \mathrm{n}) \tag{1.9}
\end{equation*}
$$

Các phần tử mới nằm trên các hàng khác:

$$
\begin{equation*}
a_{i j}^{\prime}=a_{i j}-a_{i s} \cdot a_{k j}^{\prime}(i \neq k ; j=0,1, \ldots, n) \tag{1.10}
\end{equation*}
$$

Ví dụ: Với phương án ở bảng 1.3, ta đã có ẩn được chọn là $\mathrm{x}_{3}(\mathrm{~s}=3)$; ẩn bị loại $\mathrm{x}_{7}(\mathrm{k}=7)$. Phương án mới thể hiện ở bước 2 dược lập như sau:

$$
e_{1}=6 ; e_{2}=3 ; e_{3}=5 ; G_{1}=M ; G_{2}=-10 ; G_{3}=0 .
$$

Áp dụng hai công thức trên để tìm các giá trị mới của các phần tử thuộc ma trận mở rộng, ta có kết quả ghi ở bảng 1.4.

Bảng 1.4

Bước	\mathbf{e}_{i}	G_{i}	T_{i}	${ }_{1}$	x_{2}	x_{3}	X_{4}	x_{5}	X_{6}	x_{7}
				22	60	-10	6	0	M	M
11	6	M	5	-1	$2 / 3$	0	0	0	1	0
	3	-10	7	2	0	1	1	0	0	1
	5	0	20	-8	3	0	-2	1	0	-4
	$\mathrm{Z}=5 \mathrm{M}-70$		$\Delta=$	-M -42	(2/3) M-60	0	-16	0	0	-M

Lutu ý: Thực ra, ở bước I của bảng dơn hình có thể giới thiệu phương án ban đẩu mà không phải là phương án tựa, (nghĩa là ẩn cơ bản có giá trị âm), sau đó biến đổi nó thành phương án tựa ở bước II. Cách này sẽ bớt được số lượng ẩn giả, song cũng rất dề nhầm lẩn. Tốt nhất là ngay từ bước I đã là phương án tựa.

1.3.7. Ví dụ giải bài toán trên bảng đơn hình

Tìm giá trị của x_{1}, x_{2}, x_{3} sao cho:

$$
\mathrm{Z}=45 \mathrm{x}_{1}+30 \mathrm{x}_{2}-25 \mathrm{x}_{3}-\mathrm{Max}
$$

127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 36

Và thoả mân các điều kiện:
$\left.\begin{array}{ll}x_{1}+x_{2}+x_{3} & =250 \\ 2 x_{1}+x_{2}-x_{3} & \leq 150 \\ x_{1}+2 x_{2}+2 x_{3} & \geq 300 \\ x_{1}, x_{2 .} x_{3} & \geq 0\end{array}\right\}$

Trước hết, chuyển hàm mục tiêu sang dạng $\operatorname{Min}(Q=-Z)$:

$$
Q=-45 x_{1}-30 x_{2}+25 x_{3}-\operatorname{Min}
$$

Đổi dấu của bất đẳng thức thứ ba:

$$
-x_{1}-2 x_{2}-2 x_{3} \leq-300
$$

Biến các bất đẳng thức của hệ ràng buộc thành đẳng thức bằng cách thêm vào hai bất đẳng thức cuối các ẩn phụ X_{4} và X_{5} :

$$
\left.\begin{array}{ll}
x_{1}+x_{2}+x_{3} & =250 \\
2 x_{1}+x_{2}-x_{3}+x_{4} & =150 \\
-x_{1}-2 x_{2}-2 x_{3}+x_{5} & =-300
\end{array}\right]
$$

Nhân 2 vế của đẳng thức cuối với -1 :

$$
\begin{array}{ll}
x_{1}+x_{2}+x_{3} & =250 \\
2 x_{1}+x_{2}-x_{3}+x_{4} & =150 \\
x_{1}+2 x_{2}+2 x_{3}-x_{5} & =300
\end{array}
$$

Ta có ma trận hệ ràng buộc:

$$
\left(\begin{array}{rrrrr}
1 & 1 & 1 & 0 & 0 \\
2 & 1 & -1 & 1 & 0 \\
1 & 2 & 2 & 0 & -1
\end{array}\right)
$$

127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

Muốn có ma trận đơn vị thì phải bổ sung thêm 2 cột thành phần, trong đó một cột có phần tử chính (số 1) ở hàng thứ nhất và một cột có phần tử chính ở hàng thứ 3 :

$$
\left(\begin{array}{rrrrrrr}
1 & 1 & 1 & 0 & 0 & 1 & 0 \\
2 & 1 & -1 & 1 & 0 & 0 & 0 \\
1 & 2 & 2 & 0 & -1 & 0 & 1
\end{array}\right)
$$

Đến đây ta có ma trận đơn vị gồm 3 cột, lần lượt là (theo thứ tự phần tử trên chéo chính) cột 6 , cột 4 và cột 7 . Phương án tựa ban đầu là:

$$
\mathrm{x}_{6}=250 ; \quad \mathrm{x}_{4}=150 ; \quad \mathrm{x}_{7}=300
$$

Việc thêm cột 6 và cột 7 cung có nghĩa là thêm 2 ẩn giả x_{6} và x_{7}. Các ẩn giả này có hệ số ràng buộc là 1 , còn hệ số hàm mục tiêu của chúng là M (số dương lớn tuỳ ý). Mô hình chính tắc củ̉a bài toán là:

$$
\begin{array}{rlr}
\mathrm{Q}=-45 \mathrm{x}_{1}-30 \mathrm{x}_{2}+25 \mathrm{x}_{3}+0 . \mathrm{x}_{4}+0 . \mathrm{x}_{5} & +M \mathrm{x}_{6}+\mathrm{M} \mathrm{x}_{7}-\mathrm{Min} \\
\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{6} & =250 \\
2 \mathrm{x}_{1}+\mathrm{x}_{2}-\mathrm{x}_{3}+\mathrm{x}_{4} & =150 \\
\mathrm{x}_{1}+2 \mathrm{x}_{2}+2 \mathrm{x}_{3}-\mathrm{x}_{5}+\mathrm{x}_{7} & =300 \\
\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{7} \geq 0 & &
\end{array}
$$

Phương án tựa ban đầu: $x_{6}=250 ; x_{4}=150 ; x_{7}=300$.
Ghi lại các thông tin này trên bảng dơn hình (bảng 1.5).
Phương án 1: Không tối ưu: x_{2} được chọn, x_{4} bị loại.
Phương án 2: Không tối ưu; x_{3} dược chọn, x_{7} bị loại.
Phương án 3: Không tối ưu: x_{5} dược chọn, x_{6} bị loại.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

Phương án 4: Tối ưu.

$$
x_{2}=200 ; x_{3}=50 ; Q=-4750 ; Z=4750 \text { (xem bảng } 1.5 \text {) }
$$

Bảng 1.5.

e	G.	T	x_{1}	x_{2}	x_{3}	x_{4}	X_{5}	x_{6}	X_{7}
			-45	-30	25	0	0	M	M
6	M	250	1	1	1	0	0	1	0
4	0	150	2	1	-1	\dagger	0	0	0
7	M	300	1	2	2	0	-1	0	1
$\mathrm{Q}=550 \mathrm{M}$		$\Delta_{1}=$	$\begin{array}{r} 2 \mathrm{M} \\ +45 \end{array}$	$\begin{gathered} 3 \mathrm{M} \\ +30 \end{gathered}$	$\begin{aligned} & 3 M \\ & -25 \end{aligned}$	0	-M	0	0
6	M	100	-1	0	2	-1	0	1	0
2	-30	150	2	1	- $\%$	1	0	0	0
7	M	0	-3	0	4	-2	-1	0	1
$Q=100 \mathrm{M}-4500$		$\Delta_{i}=$	$\begin{aligned} & -4 M \\ & -15 \end{aligned}$	0	$\begin{aligned} & \mathrm{BM} \\ & +5 \end{aligned}$	$\begin{aligned} & -3 \mathrm{M} \\ & -30 \end{aligned}$	-M	0	0
6	M	100	0.5	0	0	0	0,5	1	-0. 5
2	-30	150	1,25	1	0	0,5	-0,25	0	0,25
3	25	0	-0,75	0	1	-0,5	-0,25	0	0,25
$Q=100 \mathrm{M}-4500$		$\Delta_{i}=$	$\begin{gathered} 0,5 \mathrm{M} \\ -11,25 \end{gathered}$	0	0	-27,5	$\begin{gathered} 0,5 \mathrm{M} \\ +1,25 \end{gathered}$	0	$\begin{aligned} & -1,5 \mathrm{M} \\ & -1,25 \end{aligned}$
5	0	200	1	0	0	0	1	2	-1
2	-30	200	1.5	1	0	0,5	0	0,5	0
3	25	50	-0,5	0	1	-0,5	0	0,5	0
$Q=4750$		$\Delta_{\mathrm{j}}=$	-12,5	0	0	-27.5	0	$\begin{gathered} -12,5 \\ -M \end{gathered}$	-M

1.3.8. Tóm lược các bước thực hiện bài toán QHTT

1/ Phát biểu bài toán bằng ngôn ngữ thông thường, biểu diền nội dung của nó bằng ngôn ngư toán học: Hàm mục tiêu, các đẳng thức và bất đẳng thức của hệ các điều kiện ràng buộc (vế phải là hằng sô).
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

2/ Đưa mô hình bài toán về dạng chính tắc:

- Nếu Z tiến tới Min thì hàm mục tiêu là $\mathrm{Q}=-\mathrm{Z}$;
- Nếu bất đẳng thức có dạng \geq thì nhân 2 vế với -1 để biến bất đẳng thức có dạng \leq;
- Biến bất đẳng thức thành đẳng thức bằng cắch thêm vào vế trái một ẩn phụ có hệ số là 1 , còn hệ số của ẩn phụ ở hàm mục tiêu là 0 ;
- Khi đả thành đẳng thức rồi mà vế phải âm thì đổi dấu cả hai vế.

3/ Tìm phương án tựa ban dầu bằng cách tìm ma trận đơn vị cấp m chứa trong ma trận hệ ràng buộc. Nếu không có hoặc thiếu thì thêm cột sao cho có đủ m cột thành phần. Thêm một cột cũng là thêm 1 ẩn giả. Ẩn giả có hệ số là 1 , còn hệ số của nó ở hàm mục tiêu là số dương M lớn tuỳ ý.

Ưng với mỗi cột của ma trận đơn vị ta có 1 ẩn cơ bản. Có m ẩn cơ bản nhận giá trị vế phải, các ẩn khác (gọi là ẩn tự do) đều bằng 0 .

4/ Lập bảng đơn hình. Ghi các thông tin ban đầu vào bước 1 .

5/ Tính số kiểm tra và đánh giá phương án:

- Nếu tối ưu hoạc vô nghiệm thì kết thúc.
- Nếu không tối ưu thì thực hiện công việc 6 .

6/ Thực hiện nội dung hoàn thiện phương án để có phương án mới, sau đó quay lại 5.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 40

Qua thực tế sử dụng phương pháp đơn hình, người ta đã rút ra kết luận mang tính thống kê sau đây: Bài toán QHTT dạng tổng quát có m ràng buộc và n ẩn, nếu $\mathrm{m}<50$ và $\mathrm{m}+\mathrm{n}<200$ thì số bước lặp (từ phương án tựa ban đầu đến phương án tối ưu) thường không quá $3 \mathrm{~m} / 2$ và rất ít khi vượt quá 3 m .

Lutu ý các trường hợp vô nghiệm:
Các bài toán vô nghiệm chủ yếu là do đặt các điều kiện ràng buộc vô lý. Chẳng hạn các bất đẳng thức sau đều vô lý:

$$
\begin{aligned}
& 2 x_{1}+6 x_{2}+x_{3} \leq-5 \\
& -3 x_{4}-4 x_{2} \geq 7 \\
& 0 x_{1}+0 x_{2}+0 x_{3}=3
\end{aligned}
$$

Nếu biết và sửa ngay từ đầu thì đỡ mất công tính toán, song đa số các trường hợp không thể nhận biết ngay được, mà chỉ có thể phát hiện trong quá trình tính toán.

Các dấu hiệu sau dây cho biết bài toán vô nghiệm:
a/ Phần tử $\mathrm{T}_{\mathrm{k}}>0$, trong khi mọi $\mathrm{a}_{\mathrm{kj}} \leq 0(\mathrm{j}=1 . . \mathrm{n})$;
b/ Đã xác định được ẩn được chọn là x_{s}, song không tìm được ẩn bị loại vì mọi tỷ số

$$
\frac{T_{i}}{a_{i}}<0 \text { với mọi } i(i=1 . . \mathrm{m}) ;
$$

c/ Phương án tuy đạt tiéu chuấn tối ưu, song có ần giả nhận giá trị khác 0 .

Dến đây, bạn có thể giải 4 bài toán mở đầu giới thiệu ở mục 1.1.

Litu y các trường hợp vô số nghiệm:
Khi áp dụng kết quả tính toán vào thực tế, do còn nhiều yếu tố mà ta chưa thể lượng hóa nên một phương án tối ưu cụ thể nào đó đôi khi không phù hợp, cần lựa chọn phương án "dùng được" trong số vài phương án tối ưu.

Như đã biết, bài toán QHTT có thể vô nghiệm, hoặc có I nghiệm duy nhất, hoạc có vô số nghiệm. Trường hợp vô số nghiệm thì các phương án chỉ khác nhau về giá trị các ẩn, còn giá trị hàm mục tiêu là như nhau.

Mặc dù các phương pháp giải bài toán QHTT chỉ cho ta 1 phương án tối ưu, song điều quan trọng là nó đã cho ta giá trị tối ưu của hàm mục tiêu. Từ đây ta có thể xác định được các phương án tối ưu khác bằng cách giải hệ bất phương trình gồm:

- Hàm mục tiêu với vế phải là giá trị Z của phương án tối ưu;
- Hệ ràng buộc của bài toán;
- Điĉ̀u kiện tất yếu.

Hệ bất phương trình này bao giờ cũng có nghiệm: hoặc là 1 nghiệm duy nhất (đó là phương án tóí ưu mà ta đā tìm được bằng phương pháp đơn hình), hoặc là có vô số nghiệm mà ta dễ dàng xác định được để so sánh.

Vi du: Trở lại bài toán ở mục 1.3.7. Bà̀ng phương pháp đơn hình ta đã tìm dược 1 phương án tối ưu là:

$$
x_{1}=0 ; x_{2}=200: x_{3}=50 ; Z=4750 \text { (xem bảng } 1,5 \text {) }
$$

Muốn tìm các phương án tối ưu khác thì giải hệ bất 127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 42
phương trình gồm hàm mục tiêu có giái trị là 4750 , hệ ràng buộc và điều kiện tất yếu:

Tìm giá trị của x_{1}, x_{2}, x_{3} sao cho:
$\left.\begin{array}{ll}45 x_{1}+30 x_{2}-25 x_{3} & =4750 \\ x_{1}+x_{2}+x_{3} & =250 \\ 2 x_{1}+x_{2}-x_{3} & \leq 150 \\ x_{1}+2 x_{2}+2 x_{3} & \geq 300 \\ x_{1}, x_{2} x_{3} & \geq 0\end{array}\right\}$

Giải hệ trên, ta có nghiệm:

$$
\begin{aligned}
& 0 \leq x_{1} \leq 200 \\
& 0 \leq x_{2} \leq 200-(3 / 2) \mathrm{x}_{1} \\
& \mathrm{x}_{3}=250-\mathrm{x}_{1}-\mathrm{x}_{2}
\end{aligned}
$$

Từ đây, cho x_{1} một giá tị bất kì trong khoảng [$0 ; 200$], ta sẽ xác định được giá trị tương ứng của x_{2} và x_{3}, chẳng hạn:

Phương án 1: $x_{1}=0 ; x_{2}=200 ; x_{3}=50 ;$
Phương án 2: $x_{1}=10 ; x_{2}=185 ; x_{3}=55 ;$
Phương án 3: $x_{1}=20 ; x_{2}=170 ; x_{;}=60$;
V.V...

1.4. CẶP BȦI TOÁN QHTT ĐỐI NGẪU

1.4.1. Hai bài toán dẫn

a. Bài toán sản xuất dá xây dụng (bài toán gốc).

Một doanh nghiệp A sản xuất 3 loại đá dùng cho xây
dựng công trình GTVT. Giá bán 1 đơn vị đá loại I, II và III tương ứng là 90 triệu đồng, 140 triệu đồng và 50 triệu đồng.

Tài sản chủ yếu của doanh nghiệp gồm 6300 mét vuông mạat bằng, 54 thiết bị (giả sử cùng loại và có chất lượng như nhau) và 5 thùng thuốc nổ trong kho để sừ dụng cho một tháng.

Số thiết bị cần thiết để sản xuất 1 đơn vị đá loại I, II và III tương ứng là 9 chiếc, 4 chiếc và 4 chiếc.

Diện tích mặt bằng mà 1 đơn vị đá loại I, II và III chiếm chổ tương ứng là $900 \mathrm{~m}^{2}, 500 \mathrm{~m}^{2}$ và $500 \mathrm{~m}^{2}$.

Đặc biệt 1 đơn vị đá loại II cần 1 thùng thuốc nổ.
Vấn đề đặt ra là: Hàng tháng, doanh nghiệp phải sản xuất bao nhièu đơn vị đá các loại để tổng doanh thu là lớn nhất.

Gọi x_{1}, x_{2} và x_{3} là số lượng đơn vị đá loại I, II và III cần sản xuất trong tháng, lúc đó:

Hàm mục tiêu:

$$
Z=90 x_{1}+140 x_{2}+50 x_{7}-\operatorname{Max}
$$

Các điều kiện ràng buộc:

$$
\left\{\begin{array}{lll}
9 \mathrm{x}_{1}+4 \mathrm{x}_{2}+4 \mathrm{x}_{3} & \leq 54 & \text { (thiết bị) } \\
9 \mathrm{x}_{1}+5 \mathrm{x}_{2}+5 \mathrm{x}_{3} & \leq 63 & \text { (trām m} \left.\mathrm{m}^{2}\right) \\
\mathrm{x}_{2} & \leq 5 & \text { (thùng thuốc nổ) } \\
\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} & \geq 0 &
\end{array}\right.
$$

127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 44

Đây là bài toán quy hoạch tuyến tính quen thuộc mà chúng ta đã giải quyết ở mục trên.

Vởi bài toán có số liệu cụ thể như trên thì phương án tối ưu sẽ là:

$$
x_{1}=2 ; x_{2}=5 ; x_{3}=4 ; Z=1080 .
$$

Điều này có nghĩa là: Với đơn giá các loại đá như vậy, với cơ sở vật chất hiện có như vậy, mổi tháng dơanh nghiệp cần sản xuất 2 dơn vị đá loại $\mathrm{I}, 5$ đơn vị đá loại II và 4 đơn vị đá loại III, khi đó doanh thu tối đa sē là 1080 triệu đồng.
b. Bài toán cho thuê co sở sản xuất (bài toán đối ngẫu)

Doanh nghiệp A nối trên có chủ trương chuyển hướng hoạt động sang lĩnh vực khác sau vài tháng nữa, vì vậy từ nay đến lúc đó họ cân nhắc giữa việc tiếp tục sản xuất theo kế hoạch đã lập và việc cho doanh nghiệp B thuê lại cơ sở sản xuất.

Tất nhiên, giá cho thuê hàng tháng phải lớn hơn hoặc bā̀ng 1080 triệu đồng (nếu không được như vậy thì tiếp tục sản xuất).

Gọi y_{1} là giá cho thuê 1 thiếl bị;
y_{2} là giá cho thuê 1 trām m^{2} mặt bằng;
y_{3} là giá 1 thùng thuốc nổ.

- Để sản xuất I đơn vị đá loại I có giá trị 90 triệu đồng cần sử dụng 9 thiết bị và 9 trām m^{2} mặt bằng. Vậy giá cho thuê cơ sở này để sản xuất đá loại I không được nhỏ hơn 90 triệu đồng:

$$
\begin{equation*}
9 y_{1}+9 y_{2} \geq 90 \tag{1}
\end{equation*}
$$

- Để sản xuất 1 đơn vị đá loại II có giá bán 140 triệu đồng cần sử dụng 4 thiết bị, 5 trăm m^{2} mặt bằng và 1 thùng thuốc nổ. Vậy giá cho thuê cơ sở này để sản xuất đá loại II không được nhỏ hơn 140 triệu đồng:

$$
\begin{equation*}
4 y_{1}+5 y_{2}+y_{3} \geq 140 \tag{2}
\end{equation*}
$$

- Để sản xuất 1 đơn vị đá loại III có giá bán 50 triệu đồng cần sử dưng 4 thiết bị và 5 trām m^{2} mặt bằng. Vậy giá cho thuê cơ sở này để sản xuất đá loại III không được nhỏ hơn 50 triệu đồng.

$$
\begin{equation*}
4 y_{1}+5 y_{2} \geq 50 \tag{3}
\end{equation*}
$$

Các hệ thức (1), (2), (3) đã tạo thành hệ các điều kiện ràng buộc, tức là phải thoả mãn các điều kiện đó thì doanh nghiệp A mới cho thuê.

Với những diều kiện như vậy, doanh nghiệp B thấy rà̀ng:

Tiền thuê thiết bị là $54 y_{1}$; tiền thuê mặt bằng là $63 \mathrm{y}_{2}$ và tiền thuốc nổ là $5 \mathrm{y}_{3}$. Tổng số tiển thuê mổi tháng phải càng nhó càng tốt.

Mục tiêu của doanh nghiệp B là:

$$
\begin{equation*}
\mathrm{Q}=54 \mathrm{y}_{1}+63 \mathrm{y}_{2}+5 \mathrm{y}_{3}-\mathrm{Min} \tag{4}
\end{equation*}
$$

Lúc này, bài toán được phát biểu như sau:
Xác định giá thuê 1 thiết bị, giá thuê 1 trām m^{2} mặt bằng và giá mua 1 thùng thuốc nổ - ký hiệu $\mathrm{y}_{1}, \mathrm{y}_{2}$ và y_{3} sao cho tổng giá thuê là thấp nhất:
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 46

$$
\mathrm{Q}=54 \mathrm{y}_{1}+63 \mathrm{y}_{2}+5 \mathrm{y}_{3}-\mathrm{Min}
$$

đồng thời thoả mãn yêu cầu của doanh nghiệp A .

$$
\left\{\begin{array}{l}
9 y_{1}+9 y_{2} \geq 90 \\
4 y_{1}+5 y_{2}+y_{3} \geq 140 \\
4 y_{1}+5 y_{2} \geq 50
\end{array}\right.
$$

Và tất nhiên là $\mathrm{y}_{1}, \mathrm{y}_{2} \geq 0$.
Hai bài toán trên đây là một ví dụ về một cặp bài toán đối ngẫu của QHTT.

1.4.2. Mô hình toán học của cặp bài toán đối ngẫu

Một bài toán QHTT bao giờ cũng tồn tại bài toán đối ngẫu của nó. Cả hai bài toán này tạo thành một cạ̣p đối ngã̃u.
a. Ý nghãa tượng trưng và mô hình bài toán gốc:

Trong kỳ kế hoạch, doanh nghiệp cần sản xuất n loại sản phẩm theo các công nghệ $1,2, \ldots n$. Số sản phẩm sản xuất theo từng công nghệ dự kiến là $\mathrm{x}_{1}, \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{n}}$. Giá bán 1 sản phẩm ứng với từng loại công nghệ là $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{n}}$.

Hãy xác định các giá trị $\mathrm{x}_{\mathrm{j}}(\mathrm{j}=1$.. n$)$ sao cho tổng doanh thu trong kỳ kế hoạch là lớn nhất.

$$
\begin{equation*}
\mathrm{Z}=\mathrm{C}_{1} \mathrm{x}_{1}+\mathrm{C}_{2} \mathrm{x}_{2}+\ldots+\mathrm{C}_{n} \mathrm{x}_{\mathrm{n}}-\operatorname{Max} \tag{1.11}
\end{equation*}
$$

Biết rằng, để sản xuất 1 sản phẩm loại j cần tiêu hao một lượng nhân tố (có thể là nguyên liệu, nhiên liệu, người, công cụ...) loại i là a_{i}. Việc tiêu hao này không dược vượt quá mức dự trữ của các nhân tố, cụ thể:

$$
\begin{align*}
& \alpha \leq t \leq \beta \\
& a_{1.1} x_{1}+a_{1,2} x_{2}+\ldots a_{1, n} x_{n} \leq b_{1} \\
& a_{2.1} x_{1}+a_{2.2} x_{2}+\ldots a_{2, n} x_{n} \leq b_{2} \\
& \ldots \tag{1.12}\\
& a_{k .1} x_{1}+a_{k .2} x_{2}+\ldots a_{k, n} x_{n} \leq b_{k} \\
& a_{k+1,1} x_{1}+a_{k+2} x_{2}+\ldots a_{k}+1, n \tag{1.13}\\
& \ldots \\
& x_{n} \leq b_{k+1} \\
& a_{m .1} x_{1}+a_{m .2} x_{2}+\ldots a_{m . n} x_{n}=b_{m}
\end{align*}
$$

Và điều kiện tấl yếu $x_{1}, x_{2}, \ldots x_{n} \geq 0$.
Chit y:

- Hàm mục tiêu tiến tới Max;
- Có k ràng buộc là bất đẳng thức \leq;
- Có $\mathrm{m}-\mathrm{k}$ ràng buộc kiểu đẳng thức (cũng có thể $\mathrm{k}=\mathrm{m}$):
- Bao giờ ta cũng đưa được bài toán về dạng (1.11), (1.12), (1.13).
b. Ý nghäa tự̛̣ng trang và mô hình của bài toán dối ngûu:

Một doanh nghiệp khác muốn mua lại toàn bộ lượng dự trữ các nhân tố sản xuất của doanh nghiệp này. Vậy phải định giá bán như thế nào để hai bên đều chấp nhận được?

Gọi y_{i} là giá bán một đơn vị nhân tố $\mathrm{i}(i=1,2 \ldots \mathrm{~m})$.
Khi đó giá bán các nhân tố để sản xuất ra 1 đơn vị sản phẩm loại j là:

$$
\mathrm{g}_{\mathrm{j}}=\mathrm{a}_{1, \mathrm{j}} \mathrm{y}_{1}+\mathrm{a}_{2 . \mathrm{j}} \mathrm{y}_{2}+\ldots+\mathrm{a}_{\mathrm{m} \cdot \mathrm{j}} \mathrm{y}_{\mathrm{m}}
$$

127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

Và đương nhiên bên bán chỉ có thể chấp nhận được khi $\mathrm{g}_{\mathrm{j}} \geq \mathrm{c}_{\mathrm{j}}$, nghĩa là số tiền bán được không nhỏ hơn giá bán 1 sản phẩm loại j .

Tổng số tiền mà bẻn mua phải bỏ ra là:

$$
\mathrm{Q}=\mathrm{b}_{1} \mathrm{y}_{1}+\mathrm{b}_{2} \mathrm{y}_{2}+\ldots+\mathrm{b}_{\mathrm{m}} \mathrm{y}_{\mathrm{m}}
$$

Bén mua bao giờ cūng muốn Q nhỏ nhất.
Lúc này, bài toán đối ngẫu có mô hình như sau:
Hàm mục tiêu:

$$
\begin{equation*}
\mathrm{Q}=\mathrm{b}_{1} \mathrm{y}_{1}+\mathrm{b}_{2} \mathrm{y}_{2}+\ldots+\mathrm{b}_{\mathrm{m}} \mathrm{y}_{\mathrm{m}}-\mathrm{Min} \tag{1.14}
\end{equation*}
$$

Các ràng buộc:

$$
\begin{align*}
& \mathbf{a}_{1.1} y_{1}+a_{2.1} y_{2}+\ldots+a_{m .1} y_{m} \geq C_{1} \\
& a_{2,1} y_{1}+a_{2.2} y_{2}+\ldots+a_{m .2} y_{m} \geq C_{2} \tag{1.15}\\
& \ldots \\
& a_{1 . n} y_{1}+a_{2 . n} y_{2}+\ldots+a_{m . n} y_{m} \geq C_{n} \\
& \alpha \leq 1 \leq \beta
\end{align*}
$$

Điểu kiện tất yếu: $\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{k}} \geq 0$

$$
\begin{equation*}
y_{k+1} \cdot y_{k+2}, y_{m} \text { có dáu tuỳ ý. } \tag{1.16}
\end{equation*}
$$

Chí ý: k là số lượng bất đẳng thức trong hệ ràng buộc của bài toán gốc. Nếu $\mathrm{k} \geq \mathrm{m}$ thì không có điều kiện (1.17).

Nhận xét:

1. Một bài toán QHTT bao giờ cũng có một bài toán đối ngẩu tương ứng. Người ta gọi 2 bài toán này là căp bài toán dối ngầu.
2. Bài tớn gốc có hàm mục tiêu đạt cực đại (Max), còn bài toán đối ngẩu có hàm mục tiêu đatt cực tiểu (Min).
3. Hệ ràng buộc của bài toán gốc gồm các bất đẳng thức có dấu \leq hoạac đả̉ng thức, còn hệ ràng buộc của bài toán đối ngẩu gồm các bất đẳng thức \geq.
4. Số ẩn của bài toán đối ngẵu bằng số đẳng thức và bất đẳng thức trong hệ ràng buộc của bài toán gốc; số bất đẳng thức trong hệ ràng buộc của bài toán đối ngẩu bằng số ẩn của bài toán gốc.
5. Hệ số hàm mục tiêu của bài toán đối ngẩu $\left(\mathrm{C}_{\mathrm{j}}\right)$ chính là giá trị các số hạng tự do $\left(\mathrm{b}_{\mathrm{i}}\right)$ của bài toán gốc.
6. Các số hạng tự do của bài toán đối ngẫu chính là giá trị hệ số hàm mục tiêu của bài tớn gốc.
7. Ma trận hệ số ràng buộc của bài toán đối ngẩu là ma trận chuyển vị của ma trận hệ số ràng buộc trong bài toán gốc.

Ma trận hệ số ràng buộc của bài toán gốc:

$$
A=\left[\begin{array}{llll}
a_{1,1} & a_{1,2} & \ldots & a_{1, n} \\
a_{2,1} & a_{2,2} & \ldots & a_{2, n} \\
\ldots . & & & \\
a_{m, 1} & a_{m, 2} & \ldots & a_{m, n}
\end{array}\right]
$$

Ma trận hệ số ràng buộc của bài toán đối ngầu:

$$
A^{\prime}=\left[\begin{array}{llll}
a_{1,1} & a_{2,1} & \ldots & a_{m, 1} \\
a_{1,2} & a_{2,2} & \ldots & a_{m, 2} \\
\ldots . & & & \\
a_{1, n} & a_{2, n} & \ldots & \\
a_{m . n}
\end{array}\right]
$$

8. Trong cạ̣p bài toán đối ngẩu có thể tồn tại các trường hợp sau:

+ Một trong hai bài toán vô nghiệm;
+ Cả hai bài toán vô nghiệm;
+ Cả hai bài toán có nghiệm.
Sau đây là một số ví dụ:
Vidul:
Bài toán gốc:

$$
\begin{aligned}
& \mathrm{Z}=5 \mathrm{x}_{1}+\mathrm{x}_{2} \text { - Max. } \\
& \left\{\begin{array}{l}
\mathrm{x}_{1}-\mathrm{x}_{2} \leq 2 \\
\mathrm{x}_{1}-3 \mathrm{x}_{2} \leq 3 \\
\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0
\end{array}\right. \\
& \mathrm{A}=\left(\begin{array}{ll}
1 & -1 \\
1 & -3
\end{array}\right)
\end{aligned}
$$

Bài toán đối ngẫu:

$$
\begin{aligned}
& \mathrm{Q}=2 \mathrm{y}_{1}+3 \mathrm{y}_{2} \text { - Min. } \\
& \left\{\begin{array}{l}
\mathrm{y}_{1}+\mathrm{y}_{2} \geq 5 \\
-\mathrm{y}_{1}-3 \mathrm{y}_{2} \geq 1 \\
\mathrm{y}_{1}, \mathrm{y}_{2} \geq 0
\end{array}\right. \\
& \mathrm{A}^{\prime}=\left(\begin{array}{cr}
1 & 1 \\
-1 & -3
\end{array}\right)
\end{aligned}
$$

Bài toán gốc có nghiệm, bài tơán đối ngầu vô nghiệm (bất đẳng thức thứ hai vô lý).
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

Vídu 2 :
Bài toán gốc:

$$
\begin{aligned}
& \mathrm{Z}=\mathrm{x}_{1}+2 \mathrm{x}_{2}+2 \mathrm{x}_{3}-\text { Max. } \\
& \left\{\begin{array}{l}
2 \mathrm{x}_{1}+5 \mathrm{x}_{2}+\mathrm{x}_{3} \leq 3 \\
-3 \mathrm{x}_{1}+8 \mathrm{x}_{2} \leq-5 \\
\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq 0
\end{array}\right. \\
& \mathrm{A}=\left(\begin{array}{ccc}
2 & 5 & 1 \\
-3 & 8 & 0
\end{array}\right)
\end{aligned}
$$

Bài toán đối ngẫu:

$$
\begin{gathered}
Q=3 y_{1}-5 y_{2}-\text { Min. } \\
\left\{\begin{array}{l}
2 y_{1}-3 y_{2} \geq 1 \\
5 y_{1}+8 y_{2} \geq 2 \\
y_{1} \geq 2 \\
y_{1}, y_{2} \geq 0
\end{array}\right. \\
A^{\prime}=\left[\begin{array}{cc}
2 & -3 \\
5 & 8 \\
1 & 0
\end{array}\right]
\end{gathered}
$$

Bài toán gốc vô nghiệm (hệ ràng buộc vô lý), còn bài toán đối ngẫu thì có nghiệm.

Vidu 3:
Bài toán gốc:

$$
\mathrm{Z}=\mathrm{x}_{1}-2 \mathrm{x}_{2}-\mathrm{Min} .
$$

$$
\left\{\begin{array}{l}
x_{1}-x_{2} \geq 5 \\
-x_{1}+x_{2} \geq 1 \\
x_{1}, x_{2} \geq 0
\end{array}\right\} \begin{aligned}
& A=\left[\begin{array}{lr}
1 & -1 \\
-1 & 1
\end{array}\right]
\end{aligned}
$$

Bài toán đối ngẩu:

$$
\begin{gathered}
\mathrm{Q}=5 \mathrm{y}_{1}+\mathrm{y}_{2}-\text { Min. } \\
\left\{\begin{array}{c}
\mathrm{y}_{1}-\mathrm{y}_{2} \leq 1 \\
-\mathrm{y}_{1}+\mathrm{y}_{2} \leq-2 \\
\mathrm{y}_{1}, \mathrm{y}_{2} \geq 0
\end{array}\right. \\
\mathrm{A}^{\prime}=\left[\begin{array}{lr}
1 & -1 \\
-1 & 1
\end{array}\right]
\end{gathered}
$$

Cả hai bài toán của cạ̣p này đều vô nghiệm.
Vi du 4:
Bài toán gốc:

$$
\begin{aligned}
& Z=x_{1}+3 x_{2}+2 x_{3}-3 x_{5}-x_{6}-\text { Max. } \\
& {\left[\begin{array}{ll}
2 x_{1}+2 x_{2}+x_{3}+x_{4}+2 x_{5}+x_{6} & \leq 10 \\
4 x_{1}+3 x_{2}-x_{3}-2 x_{4}-x_{5}+2 x_{6} & \leq 7 \\
x_{1}, x_{2} \ldots x_{6} & \geq 0
\end{array}\right.} \\
& A=\left[\begin{array}{cccccc}
2 & 2 & 1 & 1 & 2 & 1 \\
4 & 3 & -1 & 2 & -1 & 2
\end{array}\right]
\end{aligned}
$$

Bài toán đối ngẫu:

$$
\mathrm{Q}=10 \mathrm{y}_{1}+7 \mathrm{y}_{2}-\mathrm{Min}
$$

127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

$$
\left(\begin{array}{l}
2 y_{1}+4 y_{2} \geq 1 \\
2 y_{1}+3 y_{2} \geq 3 \\
y_{1}-y_{2} \geq 2 \\
y_{1}-2 y_{2} \geq 0 \\
2 y_{1}-y_{2} \geq-3 \\
y_{1}+2 y_{2} \geq-1 \\
y_{1}, y_{2} \geq 0
\end{array} A^{\prime}=\left[\begin{array}{cc}
2 & 4 \\
2 & 3 \\
1 & -1 \\
1 & -2 \\
2 & -1 \\
1 & 2
\end{array}\right] .\right.
$$

Cả hai bài toán đều có nghiệm.

1.4.3. Nguyên lý đối ngẫu

a. Nếu cả hai bài toán của cặp bài toán đối ngẩu dè̀u có lờ giäi thi giá tị hàm muc tiêu của bài toán Max $\left(Z_{\text {max }}\right)$ cỉa một phương án bất ky không lớn hơn giá trị hàm mục tiêu của bài toán Min ($Q_{\text {min }}$) cria mọ́t phutong án bấl kỳ. Tiúc là:

$$
\mathrm{Z}_{1} \leq \mathrm{Z}_{2} \leq \ldots \leq \mathrm{Z}_{\max }=\mathrm{Q}_{\tan } \leq \ldots \mathrm{Q}_{2} \leq \mathrm{Q}_{1}
$$

Giá trị hàm mục tiêu trong lời giải tối ưu của hai bài toán bà̀ng nhau.

$$
\mathrm{Z}_{\max }=\mathrm{Q}_{\min }
$$

b. Nếit một trong hai bài toán không có lời giải thì bài
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 54
toán còn lai hoạc là không giaii, hoặc là hàm muc tiêu không bị hạn ché.

1.4.4. Giải bài toán đối ngẫu

1. Trước hết giải bài toán gốc trên bảng đơn hình. Nếu bài toán có lời giải tối ưu thì tiến hành các việc tiếp theo.
2. Ở phương án tối ưu có m ẩn cơ bản là $\mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{s}}, \mathrm{x}_{\mathrm{r}} \ldots$ Hệ số hàm mục tiêu ứng với các ẩn cơ bản này là $\mathrm{C}_{\mathrm{k}}, \mathrm{C}_{\mathrm{s}}, \mathrm{C}_{\mathrm{r}} \ldots$ khi đó ta có véc tơ hàng $\mathrm{C}=\left(\mathrm{C}_{\mathrm{k}}, \mathrm{C}_{\mathrm{s}}, \mathrm{C}_{\mathrm{r}} \ldots\right)$.
3. Trong ma trận hệ ràng buộc ở bước đầu tiên (bước I), ta lấy từng cột ứng vối $x_{k}, x_{s}, x_{r} \ldots$ đưa vào ma trận A. Đây là ma trận vuông cấp m.n.

$$
A=\left[\begin{array}{llll}
a_{1, k} & a_{1, s} & \ldots & a_{1, r} \ldots \\
a_{2 k} & a_{2, s} & \ldots & a_{2, r}, \ldots \\
\ldots & & & \\
a_{m k} & a_{m, s} & \ldots & a_{m, r} \ldots
\end{array}\right]
$$

4. Tìm A^{-1} là ma trận nghịch đảo ma trận A .
5. Nhân C với A^{-1} sẽ nhận được véc tơ hàng Y :

$$
\begin{equation*}
\mathrm{Y}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots \mathrm{y}_{\mathrm{m}}\right)=\mathrm{C} . \mathrm{A}^{-1} \tag{2.3}
\end{equation*}
$$

Trong đó $\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots \mathrm{y}_{\mathrm{m}}$ là giá trị các ẩn cơ bản của bài toán đối ngẩu. Giá trị hàm mục tiêu của cặp bài toán là bằng nhau.

Vi dụ: Trớ lại bài toán nêu ở mục 1.4.1.
Các bước giải bài toán gốc được thể hiện trên bảng (1.6), trong đó:

Ẩn cơ bản ở bước cuối cùng gồm $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{3}$
Hệ số hàm mục tiêu tương ứng là $9,5,14$: $\mathrm{C}=(9,5$, 14).

Ở bước I của bảng đơn hình, các cột ma trận hệ ràng buộc ứng với $\mathrm{x}_{1}, \mathrm{x}_{2}$ và x_{3} tạo thành ma trận vuông A .

$$
\begin{gathered}
\mathrm{A}=\left[\begin{array}{lll}
9 & 4 & 4 \\
9 & 5 & 5 \\
0 & 1 & 0
\end{array}\right] \text { từ đó } \mathrm{A}^{-1}=\left[\begin{array}{ccc}
5 / 9 & -4 / 9 & 0 \\
-1 & 1 & -1 \\
0 & 0 & 1
\end{array}\right] \\
\mathrm{Y}=\mathrm{C}^{-} \cdot \mathrm{A}^{-1}=(0,1,9) \text { có nghĩa là } \mathrm{y}_{1}=0 ; \mathrm{y}_{2}=1 ; \mathrm{y}_{3}=9 .
\end{gathered}
$$

Bảng 1.6.

Bước	ϵ_{i}	G_{1}	Ti	x_{1}	x_{2}	x_{3}	x_{4}	X_{5}	x_{6}
				$\begin{aligned} & (-) \\ & 90 \end{aligned}$	$\begin{gathered} (-) \\ 140 \end{gathered}$	$\begin{aligned} & (-) \\ & 50 \end{aligned}$	0	0	0
1	$\begin{aligned} & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 54 \\ 63 \\ 5 \end{gathered}$	$\begin{aligned} & 9 \\ & 9 \\ & 0 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \\ & 1 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$
$Z=0$			$\Delta_{i}=$	90	140	50	0	0	0
\ldots									
Cuôi cùng	$\begin{aligned} & 1 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & (-) 90 \\ & (-) 50 \\ & (-) 140 \end{aligned}$	2	$\begin{aligned} & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 5 / 9 \\ -1 \\ 0 \end{gathered}$	$\begin{gathered} -4 / 9 \\ 1 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ -1 \\ 1 \end{gathered}$
$z=1080$			$\Delta_{\mathrm{j}}=$	0	0	0	0	-10	-90

Kết luận:

Giá cho thuê mà hai bên chấp nhận được là:
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

- Thiết bị không đáng giá vì quá kém.
- Mặt bằng có giá thuê là 1 triệu đồng $/ 100 \mathrm{~m}^{2}$.
- Thuốc nổ có giá 9 triệu đồng /thùng.
- Tổng giá cho thuê 1 tháng là 1080 triệu đồng.

Như vậy, có 2 cách giải bài toán đối ngẩu:

Cách thứ nhất:

- Biểu diễn bài toán gốc theo mô hình (2.1) và giải bài toán này, ta có lời giải của bài toán gốc.
- Từ mô hình của bài toán gớc, biểu diễn mô hình của bài toán đối ngầu và giải bài toán đó.
- Cān cứ kết quả của 2 bài toán để kếl luận.

Cách thứ hai:

- Biểu diển bài toán gốc theo mô hình (2.1) và chỉ giải bài toán này. Ghi lại kết quả từng buớc trên bảng đơn hình.
- Cān cứ các số liệu ở bước I và bước cuối cùng ở bảng đơn hình, áp dụng các công thức 1.12 dể có kết quả cuối cùng.
- Két luận về bài toán đối ngāuu.

Với cách thứ nhất ta phải giải 2 bài toán QHTT, song trănh được việc đi tìm ma trận nghịch đảo. Còn với cách thứ hai thì chỉ phải giải một bài toán QHTT, nhưng phải thực hiện 1 lần việc tìm ma trận nghịch đảo.

Kinh nghiệm cho thấy: giải bài toán bằng tay thì nên chọn cách thứ hai, còn giải trên MTĐT thì nên chọn cách thứ nhất.
(Xem mục lập trình giải bài toán QHTT tren MTĐT).

1.5. BÀI TOÁN QUY HOACH TUYẾN TÍNH THAM SỐ

1.5.1. Bài toán dẫn

Một xí nghiệp dự định trong thời gian tới, mỗi tháng sẽ sản xuất X_{1} sản phẩm I và x_{2} sản phẩm loại II .

Để sản xuất 1 đơn vị sản phẩm loại I cần 1 tấn nguyên liệu, sản phẩm loại II cần 1,2 tấn nguyên liệu. Giá mua nguyên liệu loại I là t USD/ tấn; giá mua nguyên liệu loại II cũng là t USD/ tấn, nhưng mỗi đơn vị sản phẩm làm ra được khuyến mại 3 USD.

Trong thời gian tới, giá nguyên liệu có khả nāng biến động từ 10 đến 20 USD/tấn.

Vậy với giá nguyên liệu biến động trong khoảng đó thì mỗi tháng Xí nghiệp cần sản xuất bao nhiêu sản phẩm loại I và loại II để tổng chi phí mua nguyên liệu là thấp nhất, biết rà̀ng:

- Số sản phẩm loại II không ít hơn 30% tổng sản phẩm;
- Tổng sản phẩm không nhỏ hơn 450;
- Mổi sản phẩm loại I và loại II tiêu thụ điện năng tương ứng là 30 Kwh và 40 Kwh , trong khi chỉ tiêu điện năng hàng tháng không được vượt quá 20.000 Kwh .

Với bài toán trên ta thấy:
Chi phí nguyên liệu cho 1 sản phẳm loại I là t;
Chi phí nguyên liệu cho 1 sản phẩm loại II là $1,2 \mathbf{t}-3$;
Tổng chi phí nguyēn liệu là:
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

$$
Z=1 x_{1}+(1,2 t-3) x_{2}
$$

trong đó: $10 \leq \mathbf{t} \leq 20$
Các điều kiện ràng buộc gồm:
$\left.\begin{array}{ll}30 \%\left(x_{1}+x_{2}\right) & \leq x_{2} \\ x_{1}+x_{2} & \geq 450 \\ 30 x_{1}+40 x_{2} & \leq 20.000 \\ x_{1}, x_{2} & \geq 0\end{array}\right\}$

Trong bài toán này, các hệ số của hàm mục tiêu (C_{j}) không phải là hằng, mà giá trị của chúng phụ thuộc tuyến tính tham số t . và do đó lời giải của bài toán cũng phụ thuộc vào tham số t.

Như vậy, tuỳ theo giá trị của t nà̀m trong khoảng nào đó mà ta có được phương án sản xuất tối ưu tương ứng. Rõ ràng bài toán loại này có ý nghĩa sát thực hơn là bài toán gồm các giá trị trung bình là hằng số.

1.5.2. Mô hình toán học

Quy hoạch tuyến tính tham số giải quyết các bài toán mà các hệ số của nó (hệ số hàm mục tiêu, hệ số ràng buộc, số hạng tự do) phụ thuộc tuyến tuyến vào một tham số t nào đó.

Ở đây chúng ta chỉ đề cập đến bài toán mà các hệ số hàm mục tiêu phụ thuộc tuyến tính tham sớ t, còn các hệ số khác là hằng số.

Hàm mục tiêu:

$$
\begin{equation*}
Z=C_{1}(t) x_{1}+C_{2}(t) x_{2}+\ldots+C_{n}(t) x_{n}-C u ̛ ̣ c ~ t r i ̣ . \tag{1.18}
\end{equation*}
$$

Hệ ràng buộc:

$$
\begin{gathered}
a_{t, 1} x_{1}+a_{1,2} x_{2}+\ldots+a_{1, n} x_{n}\left[\square b_{1}\right. \\
\ldots \\
a_{m, 1} x_{1}+a_{m .2} x_{2}+\ldots+a_{m, n} x_{n} \sqcap . b_{m} \\
x_{1}, x_{2, \ldots}, x_{n} \geq 0 \\
\\
\alpha \leq t \leq \beta \\
\text { trong đó l. là một trong các dấu }=, \leq, \geq .
\end{gathered}
$$

1.5.3. Phương pháp giải bài toán

Bước 1: Đưa mô hình bài toán về dạng chính tắc. Lúc này hàm mục tiĉu có dạng:

$$
\begin{gathered}
Q=C_{1}(t) x_{1}+C_{2}(t) x_{2}+\ldots+C_{n}(t) x_{n}-\operatorname{Min} \\
\alpha \leq t \leq \beta
\end{gathered}
$$

trong đó $\mathrm{C}_{1}(\mathrm{t})$ là hàm bậc nhất đối với tham số t .
Bước 2: Gán cho 1 giá trị cận dưới của nó $(\mathrm{t}=\alpha)$ rồi giải bài toán theo phương pháp đơn hình. Phương án tối ưu đương nhiên có các số kiểm tra đệu là hằng số và $\Delta_{\mathrm{j}} \leq 0$.

Bước 3: Tính lại các số kiểm tra, trong đó thay các C_{j} là hằng số bằng các $\mathrm{C}_{\mathrm{j}}(\mathrm{t})$ rồi lập hệ bất phương trình:

$$
\Delta_{\mathrm{j}}(\mathrm{t}) \leq 0
$$

Bước 4 : Giảj hệ bất phương trình trên, có nghiệm $\alpha \leq \mathbf{t}$ $\leq \alpha^{\prime}$.

Nếu $\left[\alpha, \alpha^{\prime}\right]$ bao toàn bộ khoảng $[\alpha, \beta]$ thì bài toán đã dược giaii xong.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 60

- Nếu $\alpha^{\prime}<\beta$ thì phương án đang xét chỉ đúng khi t nằm trong khoảng [α, α^{\prime}].

Lúc này, nếu $\Delta_{\mathrm{s}}>0$ khi $\mathrm{t}>\alpha^{\prime}$ thì chuyển phương án bằng cách đưa x_{s} vào danh sách các ẩn cơ bản (ẩn bị loại là ẩn ứng với tỷ số dương $\mathrm{T}_{\mathrm{i}} / \mathrm{a}_{\mathrm{i}}$ nhỏ nhất).

Quay lại làm như bước 3 và bước 4 cho đến khi kết thúc.

1.5.4. Giải bài toán dẫn

Bài toán dẩn ở mục 1.5.1 có mô hình toán học:

$$
\begin{aligned}
& \mathrm{Z}=\mathrm{tx}_{1}+(1,2 \mathrm{t}-3) \mathrm{x}_{2}-\mathrm{Min} \\
& 30 \%\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right) \quad \leq \mathrm{x}_{2} \\
& \mathrm{x}_{1}+\mathrm{x}_{2} \quad \geq 450 \\
& 30 \mathrm{x}_{1}+40 \mathrm{x}_{2} \quad \leq 20.000 \\
& \mathrm{x}_{1}, \mathrm{x}_{2} \quad \geq 0 \\
& 10 \leq \mathrm{t} \leq 20
\end{aligned}
$$

Đưa bài toán về dạng chính tắc, ta có:

$$
\left.\begin{array}{cl}
Z=t x_{1}+(1,2 t-3) x_{2}+0 x_{3}+0 x_{4}+0 x_{5}+M x_{6}-M i n \\
0,3 x_{1}-0,7 x_{2}+x_{3} & =0 \\
x_{1}+x_{2}-x_{4}+x_{6} & =450 \\
30 x_{1}+40 x_{2}+x_{5} & =20.000 \\
x_{1}, x_{2} & \geq 0 \\
10 \leq t \leq 20 &
\end{array}\right\}
$$

Trong đó $\mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}$ là các ẩn phụ; x_{6} là ẩn giả. Cho $\mathrm{t}=10$,
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012
giải bài toán trên bảng đơn hình, ta có phương án tối ưu ở bảng 1.7.

Bảng 1.7.

θ_{i}	G_{i}	T_{1}	X_{1}	x_{2}	X_{3}	x_{4}	x_{5}	\mathbf{x}_{6}
			t	1,2t-3	0	0	0	M
			10	9				
3	0	315	1	0	1	-0.7	0	0,7
2	9	450	1	1	0	-1	0	1
5	0	20000	-1	0	0	4	1	-4
$\mathrm{Z}=4050$		$\Delta_{\mathrm{j}}=$	-1	0	0	-9	0	-M

Phương án ở bảng 1.7 là tối ưu chỉ với $\mathrm{t}=10$.
Tính số kiểm tra phụ thuộc t của phương án:
$\Delta_{1}=1,2 \mathrm{t}-3-(\mathrm{t})=0,2 \mathrm{t}-3$
$\Delta_{2}=0$
$\Delta_{3}=0$
$\Delta_{4}=-1,2 t+3$
$\Delta_{s}=0$
$\Delta_{6}=1,2 \mathrm{t}-3-\mathrm{M}$ (luôn âm vì M dương, lớn tuỳ ý).
Giải hệ bất phương trình:

$$
\left.\begin{array}{l}
\Delta_{1}=0,2 \mathrm{t}-3 \leq 0 \\
\Delta_{4}=-1,2 \mathrm{t}+3 \leq 0 \\
10 \leq \mathrm{t} \leq 20
\end{array}\right\}
$$

Nghiệm của hệ phương trình là $10 \leq t \leq 15$.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

Đến đây, ta đánh giá lại phương án ở bảng 1.7, rằng đó là phương án tối ưu khi t nhận giá trị trong khoảng [10, 15].

Nếu $\mathrm{t}>15$ thì bất phương trình thứ nhất không thoả mãn (Δ_{1} không thoả mãn). Ta lập phương án mới bằng cách thay x_{1} vào vị trí x_{3} trong danh sách các ẩn cơ bản (315/1 là tỷ số dương nhỏ nhất).

Bảng 1.8.

e_{1}	G_{1}	T	x_{1}	x_{2}	x_{3}	X_{4}	x_{5}	X_{6}
			t	1,2t-3	0	0	0	M
1	t	315	1	0	1	-0,7	0	0,7
2	1,2t-3	135	0	1	-1	-0,3	0	0.3
5	0	2315	0	0	1	3,3	1	-3,3
$Z=477 \mathrm{t}-3$		$\Delta_{\mathrm{l}}=$	0	0	$-0,2 t+3$	-1,06t+0,9		-

Phương án ở bảng 1.8 là tối ưu nếu thoả mãn điều kiện sau:

$$
\left.\begin{array}{l}
\Delta_{3}=-0,2 t+3 \leq 0 \\
\Delta_{4}=-1,06 t+0,9 \leq 0 \\
t>15
\end{array}\right]
$$

Nghiệm của hệ bất phương trình là $t>15$.
Vậy phương án ở bảng 1.8 là tối ưu khi $\mathrm{t}>15$.

Kết luận:

Với giá trị của t	Phương àn tối ưu		
$10 \leq \mathrm{t} \leq 15$			
$\mathrm{t}>15$		\quad	$\mathrm{x}_{1}=0 ; \mathrm{x}_{2}=450 ; Z=540 \mathrm{t}-3$
:---			
$\mathrm{x}_{1}=315 ; \mathrm{x}_{2}=135 ; Z=477 \mathrm{t}-3$			

127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 20312

Chương II
 BÀI TOÁN VÂN TẢI

2.1. MỘT SỐ BÀI TOÁN VẬN TẢI DIỂN HÌNH

Bài toán vận tải là một dạng đặc biệt của bài toán quy hoạch luyến tính (một trường hợp riêng của bài toán phân phối). Nó được ra đời từ công tác lập kế hoạch vận chuyển hàng hoá từ một số địa điểm đến một số địa điểm khác sao cho tổng chi phí là nhỏ nhấl. Sau này rất nhiều đối tượng khác không liên quan đến vận tải song vẫn có thể sử dụng mô hình bài toán vận tải để giải quyết một cách hữu hiệu.

Nói chung số ẩn của bài toán vận tải khá nhiều. Chằng hạn một bài toán với 10 "điểm cung" và 10 "điểm cầu" thì số ẩn là 100. Tuy vậy, là một dạng dặc biệt cúa quy hoạch tuyến tính. bài toán vận tải có cách giải riêng mà không cần sử dụng phương pháp giải tổng quát.

2.1.1. Bài toán phân phới bê tông nhựa

Một công ty xây dựng công trình GTVT có 3 trạm trộn bé tông nhựa, mổi trạm có sản lượng hàng ṇ̨ày tương ứng là 30 mét khối, 40 mét khối và 15 mét khối. Có 5 dịa điểm cần cung cấp bè tông nhựa với nhu cầu mổi ngày tương ưng là $15 \mathrm{~m}^{3} ; 10 \mathrm{~m}^{3}, 20 \mathrm{~m}^{3}, 30 \mathrm{~m}^{3}, 10 \mathrm{~m}^{3}$.

Hãy lập kế hoạch cung cấp bé ông nhựa từ 3 trạm trộn
đến 5 địa điểm thi công nói trên sao cho tổng chi phí (đơn vị Tấn. Km) là nhỏ nhất, biết rằng cự li vận chuyển từ các trạm trộn đến các điểm thi công được thể hiện ở bảng 2.1.

Bảng 2.1: Khoảng cách từ Trặm i đến Điểm j.

Trạn trộn	Diêm thi công (1) cấn $5 \mathrm{~m}^{2}$	Diểm thi cồng (2) cấn $10 \mathrm{~m}^{2}$	Diêm thi cóng (3) $\text { cán } 20 \mathrm{~m}^{1}$	Biếm thi công (4) cán 30m ${ }^{3}$	Diôm thi công (5) cán 10m ${ }^{3}$
I có $30 \mathrm{~m}^{3}$	8	15	10	9	14
Il có $40 \mathrm{~m}^{3}$	16	7	8	3	10
III có $15 \mathrm{~m}^{3}$	9	25	10	16	8

Bài toán này có đạ̣c điểm là tất cả sản phẩm trong ngày của các Trạm trộn đều được các điểm thi công tiêu thụ hết (cung $=$ cầu).

Gọi x_{ij} là số m^{3} bê tông nhựa được chuyển từ Trạm i đến điểm thi cong $\mathrm{j}(\mathrm{i}=1 . .3 ; \mathrm{j}=1 . .5)$, khi đó tổng chi phí (TKm) của một phương án là:

$$
\mathrm{Z}=8 \mathrm{x}_{1.1}+15 \mathrm{x}_{1,2}+\ldots+16 \mathrm{x}_{3,4}+8 \mathrm{x}_{3,5}
$$

Mỗi phương án gồm 15 ẩn, mỗi ẩn lại có thể nhận những giá trị không âm khác nhau trong một khoảng xác định nào đó, vì vậy về nguyên tắc số phương án là vô hạn. Phương án cho giá trị Z nhỏ nhất là phương án tối ưu.

2.1.2. Bài toán bố trí máy thi công

Một conng ty cùng một lúc phải tiến hành thi công ở 5 địa điểm. Công ty có 4 loại máy thi công có thể thay thé 127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012
được cho nhau. Mỗi loại máy làm việc ở mỗi địa điểm sẽ đạt được một năng suất xác dịnh. Số lượng máy mỗi loại mà công ty có, số lượng máy cần ở mổi địa điểm và năng suất các máy làm việc ở các địa điểm khác nhau được thể hiện trên bảng 2.2.

Bảng 2.2: Nãng suất Máy i làm việc tại Công trường j.

Số mày càc loai	Công trường (1) cán 32	Cong trương (2) cán 35	Công trường (3) cấn 15	Công trưàng (4) cin 20	Cōng trường (5) cấn 10
1 có 22	41	34	50	29	40
11 có 38	40	48	27	31	44
III có 45	55	32	46	37	28
IV có 18	28	50	36	49	55

Vấn đề đặt ra là bố trí loại máy nào, làm việc ở Công trường nào, với số lượng bao nhiêu để tổng nảng suất là lớn nhất.

Điều đáng chú ý ở đây là số lượng máy thi cong mà Công ty có lớn hơn số máy cần thiết ở các điểm thi công. Nếu như bài toán ở mục 2.1.1 đòi hỏi giá trị hàm mục tiêu nhỏ nhất, thì bài toán này yêu cầu hàm mục tiêu phải dạt giá trị lớn nhất.

2.1.3. Bài toán điếu phối đẩu máy xe lửa

Giữa đầu máy xe lửa và đoàn tàu có mối quan hệ sau đây: Đầu máy khi kéo doàn tàu từ ga B về ga kĩ thuật A
(tức là ga có đépot) thì được bảo dưỡng, sau đó lại được lắp vào đoàn tàu khác để chạy theo hướng $\mathrm{A}-\mathrm{B}$.

Tại dépot A hàng ngày có 7 dầu máy được giải phóng khỏi các đoàn tàu đến từ B , đồng thời có 7 đoàn tàu xuất phát từ A đi B . Hãy lập phương án bố trí các đầu máy lắp vào các đoàn tàu sao cho tổng thời gian của các đầu máy nằm tại dépot sau khi bảo dưỡng (tính bằng phút) là ít nhất. Các dữ liệu của bài toán được thể hiện trên bảng 2.3.

Bảng 2.3.

Đằu máy	Thòi điếm $B D$ xong	Đoàn tàu	Thời điểm xuẩt phát
ĐM1	3.24	T1	6.15
ĐM2	4.00	T2	10.05
Đм3	4.10	T3	13.05
ĐM4	4.20	T4	15.45
ĐM5	4.30	T5	19.00
ĐM6	5.00	T6	21.20
@M7	5.38	T7	22.00

Gọi thời điểm bảo dưỡng xong của đầu máy $\mathrm{i}(\mathrm{i}=1 . .7$) là d_{i} thời điểm xuất phát của đoàn tàu $\mathrm{j}(\mathrm{j}=1 . .7)$ là f_{j}. Khi đó thời gian chờ đợi của đầu máy tại dépot được tính như sau:

$$
\begin{align*}
& \mathrm{t}_{\mathrm{i}, \mathrm{j}}=\mathrm{d}_{\mathrm{j}}-\mathrm{f}_{\mathrm{i}} \text { nếu } \mathrm{d}_{\mathrm{J}}>\mathrm{f}_{\mathrm{i}} \tag{1}\\
& \mathrm{t}_{\mathrm{i}, \mathrm{j}}=\mathrm{d}_{\mathrm{j}}-\mathrm{f}+1440 \text { nếu } \mathrm{d}_{\mathrm{j}}<\mathrm{f}_{\mathrm{l}} \tag{2}
\end{align*}
$$

Trong trường hợp (2), đầu máy i kéo tàu j của ngày hôm sau (còn tàu j của ngày hôm nay thì đã xuất phát trước khi đầu máy j bảo dưỡng vong).
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

Dựa vào cách tính (1) và (2) nêu trên, ta xác định được thời gian đầu máy i đợi kéo tàu j và thể hiện các giá trị đó trên bảng 2.20.

Bài toán này có 49 ẩn. Điều đặc biệt ở đây là mỗi đờn tàu chỉ cần 1 đầu máy kéo và bắt buộc phải có, vì vậy giá trị của mỗi ẩn chỉ có thể là 0 hoặc 1 (điểm "cung" chỉ có 1 , điểm "cầu" cũng chỉ cần 1).

Chúng ta sẽ trở lại giải quyết ba bài toán này ở mục sau. Còn bây giờ hãy làm quen với mô hình toán học của bài toán vận tải.

2.2. MÔ HİNH TOÁN HỌC CỦA BÀI TOÁN VẬN TẢI

2.2.1. Nội dung bài toán

Có m điểm Gửi hàng $\mathrm{A}_{1}, \mathrm{~A}_{2} \ldots, \mathrm{~A}_{\mathrm{m}}$ với khối lượng tương ứng ở mổi điển là $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{m}}$.

Có n điểm Nhận hàng $\mathrm{B}_{1}, \mathrm{~B}_{2} \ldots, \mathrm{~B}_{\mathrm{n}}$ với khối lượng tương ứng ở mổi điểm là $\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots, \mathrm{~b}_{\mathrm{n}}$.

Khoảng cách từ A_{1} dến B_{j} là $\mathrm{C}_{\mathrm{ij}}(\mathrm{i}=1,2, \ldots, \mathrm{~m} ; \mathrm{j}=1,2, \ldots, \mathrm{n})$.
C_{ij} còn được gọi là chi phí.
Vấn đề đật ra là hãy lập kế hoạch vận chuyển hàng hoá từ các điểm A_{i} dến các diểm B_{j} sao cho tổng chi phí là nhỏ nhất.

Yêu cầu của kế hoạch là:
(a) - Trả hết hàng tại các điểm gửi $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots . . \mathrm{A}_{\mathrm{m}}$.
(b) - Các điểm nhận $\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{n}}$ nhận đủ hàng.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

2.2.2. Mô hình toán học

Nếu gọi x_{i} là khối lượng hàng hoá được chuyển từ điểm i đến điểm j thì:

Hàm Mục tiêu:

$$
\begin{aligned}
& Z=C_{1,1} x_{1.1}+C_{1.2} x_{1.2}+\ldots+C_{1, \mathrm{~m}} x_{1 . \mathrm{m}} \\
& +C_{2.1} x_{2.1}+C_{2.2} x_{2.2}+\ldots+C_{2 . m} x_{2 . m} \\
& \ldots \\
& +C_{m .1} x_{m .1}+C_{m, 2} x_{m .2}+\ldots+C_{m . n} x_{m . n}-\text { Min }
\end{aligned}
$$

Ràng buộc (a)

$$
\left.\begin{array}{l}
x_{1,1}+x_{1,2}+\ldots+x_{1 \cdot n}=a_{1} \\
x_{2,1}+x_{2,2}+\ldots+x_{2 . n}=a_{2} \\
\ldots \\
x_{m, 1}+x_{m, 2}+\ldots+x_{m \cdot n}=a_{m .}
\end{array}\right\}
$$

Ràng buộc (b):

$$
\left.\begin{array}{l}
x_{1,1}+x_{2,1}+\ldots+x_{m, 1}=b_{1} \\
x_{1,2}+x_{2.2}+\ldots+x_{m \cdot 2}=b_{2} \\
\ldots \\
x_{1, n}+x_{2, n}+\ldots+x_{\mathrm{m} . \mathrm{n}}=b_{n}
\end{array}\right\}
$$

Điêu kiện tất vếu: $x_{u} \geq 0$.
Viết gọn lại, ta có mô hình toán học của bài toán:
Hàm mục tiêu:

$$
\begin{equation*}
\mathrm{Z}=\sum_{i=1}^{m} \sum_{\mathrm{l}=1}^{\mathrm{n}} \mathrm{Cij}_{\mathrm{ij}} \mathrm{Xij}-\mathrm{Min} \tag{2.1}
\end{equation*}
$$

127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

Hệ ràng buộc:

$$
\begin{align*}
& \sum_{j=1}^{n} X_{i j}=a_{i}(i=1,2, \ldots, m) \tag{2.2}\\
& \sum_{j=1}^{m} X_{i j}=b_{j}(j=1,2, \ldots, n) \tag{2.3}
\end{align*}
$$

Điều kiện tất yếu: $\mathrm{x}_{\mathrm{ij}} \geq 0$.
Trong thực tế tồn tại 3 trường hợp phải xét đến:

- Tổng khối lượng các nơi gửi bằng tổng khối lượng các nơi nhận (cân bằng Cung Cầu);
- Tổng khối lượng các nơi gửi lớn hơn tổng khối lượng các nơi nhận (Cung lớn hơn Cầu);
- Tổng khôi lượng các nơi gửi nhỏ hơn tổng khối lượng các nơi nhận (Cung nhỏ hơn Cầu).

Hai trường hợp sau đều có thể biến đổi về trường hợp thứ nhất.
a. Mó hình dóng: Cung $=$ Cầu .

Đó là mô hình của bài toán vận tải mà trong hệ ràng buộc của nó có tổng khối lượng hàng hoá của các điểm gửi bằng tổng khôi lượng hàng hoá theo nhu cầu ở các điểm nhận.

$$
\begin{equation*}
\sum_{i=1}^{m} a_{i}=\sum_{j=i}^{n} b_{i} \tag{2.5}
\end{equation*}
$$

Ý nghĩa củ̉a mó hình đóng là Cung = Cầu. Bải toán vận tải cân bằng Cung - Cảu luôn có lời giải tối uu.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012
b. Mô hình mở: Cung lớn hơn Cầu.

Tức là:

$$
\begin{equation*}
\sum_{i=1}^{m} a_{i}>\sum_{j=1}^{n} b_{j} \tag{2.6}
\end{equation*}
$$

Để đưa về mỏ hình đóng, ta đưa thêm vào bài toán một điểm nhận phụ (thực tế không có) $\mathrm{B}_{\mathrm{n}+1}$. Khối lượng hàng hoá theo nhu cầu của điểm này là:

$$
\begin{equation*}
b_{n+1}=\sum_{i=1}^{m} a_{1}-\sum_{j=1}^{n} h_{j} \tag{2.7}
\end{equation*}
$$

Chi phí vận chuyển từ A_{i} đến $\mathrm{B}_{\mathrm{n}+1}: \mathrm{C}_{\mathrm{i}, \mathrm{n}+1}=0$.
Như vậy sẽ xuất hiện thêm các ẩn phụ $\mathrm{x}_{\mathrm{i}, \mathrm{n}+1}(\mathrm{i}=1 . . \mathrm{m})$.
c. Mô hình mở: Cung nhỏ hơn Cầu.

Tức là:

$$
\begin{equation*}
\sum_{i=1}^{m} a_{i}<\sum_{j=1}^{n} b_{i} \tag{2.8}
\end{equation*}
$$

Đưa về mô hình đóng bằng cách đưa thêm vào bài toán một điểm gửi phụ (không có trong thực tê) $\mathrm{A}_{\mathrm{m}+1}$. Khối lượng hàng hoá gửi đi từ điểm này là:

$$
\begin{equation*}
a_{m+1}=\sum_{i=1}^{n} b_{1}-\sum_{i=1}^{m} a_{i} \tag{2.9}
\end{equation*}
$$

Chi phí vận chuyển từ điểm $\mathrm{A}_{\mathrm{m}+1}$ đến điểm B_{j} là: $\mathrm{C}_{\mathrm{m}+1, \mathrm{j}}=0$.
Cūng xuất hiện thêm các ẩn phụ $\mathrm{x}_{\mathrm{m}+1 . \mathrm{j}}(\mathrm{j}=1 \ldots \mathrm{n})$.
Trong lời giải tối ưu của bài toán có mô hình mở, có thể có các ẩn phụ khác không. Điều này ta hiểu là trên thực té 127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012
lượng hàng đó không chuyển đi đâu cả, hoặc có một điểm gửi hoặc một điểm nhận nào đó, nhưng ta không quan tâm đến kết quả.

Như vậy, bất cứ bài toán dạng mở nào cũng có thể đưa về dạng đóng bằng cách thêm một điểm gửi phụ (nếu Cung < Cầu) hoặc một điểm nhận phụ (nếu Cung > Càu).

Ngoài ra, với những bài toán mà hàm mục tiêu Z tiến tới Max thì ta giải bài toán với hàm mục tiêu Q tiến tới Min, trong đó $\mathrm{Q}=-\mathrm{Z}$.

2.2.3. Biểu diễn bài toán dưới dạng ma trận kép

Chi phí C_{ij} là một ma trận cấp (m.n). Các ẩn x_{ij} cŭng là một ma trận cấp (m.n). Ghép hai ma trận này với nhau, ta sẽ có một ma trận kép được thể hiện dưới dạng bảng gồm (m.n) ô. Cụ thể:

- Ở cột đầu tiên (gồm m hàng) lần lượt ghi tên các điểm gửi $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{m}}$) và khối lượng "cung" tương ứng ($\mathrm{a}_{1}, \mathrm{a}_{2} \ldots, \mathrm{a}_{\mathrm{m}}$).
- Ở hàng đầu tiên của bảng (gồm n cột) lần lượt ghi tên các điểm nhận ($\mathrm{B}_{1}, \mathrm{~B}_{2} \ldots, \mathrm{~B}_{\mathrm{n}}$) và khối lượng "cầu" tương ứng $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$.
- Với m.n ô còn lại được ghi như sau:
+ Góc trên bên trái (góc Tây Bắc) của mỗi ô ghi giá trị chi phí $\mathrm{C}_{i \mathrm{i}}$ tương ứng với hàng và cột của nó. Khoảng trống còn lại trong mổi ô dành để ghi giá trị của các ẩn x_{ij} Nhionng ó có $x_{i j}>0$ gọi là ô bận, các ô khác gọi là ô tư do. Xem bảng 2.4.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

Bảng 2.4.

	$\begin{aligned} & B_{1} \\ & b_{1} \end{aligned}$	$\begin{aligned} & B_{2} \\ & b_{2} \end{aligned}$...	$\begin{aligned} & \mathbf{B}_{\mathbf{n}} \\ & \mathbf{b}_{\mathrm{n}} \end{aligned}$
$\begin{aligned} & \mathrm{A}_{1} \\ & \mathrm{a}_{1} \end{aligned}$	$\mathrm{C}_{1,1}$	$\mathrm{C}_{1.2}$	\ldots	$\mathrm{C}_{1 . n}$
\ldots			...	
$\begin{aligned} & A_{m} \\ & a_{m} \end{aligned}$	$\mathrm{C}_{\mathrm{m}, 1}$	$C_{\text {m } 2}$...	$\mathrm{C}_{\mathrm{m}, \mathrm{n}}$

Bảng ma trận kép cho ta hình ảnh rất rõ ràng về nội dung bài toán vận tải, đồng thời rất thuận lợi cho việc áp dụng các phương pháp giải bài toán.

Vi dụ: Bài toán giới thiệu ở mục 2.1.1. có thể biểu diễn dưới dạng ma trận kép như trèn bảng 2.5. Trên bảng này cũng trình bày một phương án về giá trị của các ẩn cơ bản (các số in đậm ở giữa mổi ô). Những ô có ẩn cơ bản được gọi là ô bận, gồm các ô $(1,1),(1,2),(1,3),(2,3),(2,4)$, $(3,4),(3,5)$. Các ô còn lại là ô tự do.

Bảng 2.5

Nhạn	$b_{1}=15$	$b_{2}=10$	$b_{3}=20$	$b_{4}=30$	$b_{5}=10$
$a_{1}=30$	8	15	10	9	14
$a_{2}=40$	16	10	5		
	-	7	8	3	10
$a_{3}=15$	9	25	15	25	-

2.2.4. Các phương án của bài toán vận tải

a. Phương án chấp nhận được: Là phương án đáp ứng các điều kiện ràng buộc và điều kiện tất yếu:

$$
\begin{aligned}
& \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{i}} \text { (cung cấp hết khối lượng có); } \\
& \sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{x}_{\mathrm{ij}}=\mathrm{b}_{\mathrm{i}} \text { (nhận đủ khối lượng cần); } \\
& \mathrm{x}_{\mathrm{ij}} \geq 0 \text { (giá trị các ẩn không âm). }
\end{aligned}
$$

Có vô số phương án chấp nhận được, trong đó có phương án tối ưu.
b. Phương án tối uu: Là phương án chấp nhận được thoả mãn hàm mục tiêu đạt giá trị Max (hoặc Min).

Có thể có 1 phương án tối ưu, cũng có thể có vô số phương án tối ưu. Các phương án tối ưu chỉ khác nhau giá trị các ẩn (x_{ij}), còn giá trị hàm mục tiêu (Z) là như nhau.

Bài toán vận tải dạng đóng bao giờ cũng có phương án tối ưu.
c. Phuơng án tưa: Là phương án chấp nhận được, trong đó chỉ có $\mathrm{m}+\mathrm{n}-1$ ẩn cơ bản (có thể có ẩn cơ bản bằng 0), còn lại là các ẩn tự do đều có giá trị bằng 0 .

Số lượng phương án tựa là hữu hạn. Người ta đã chứng minh rằng phương án tối ưu cưa bài toán vận tải nằm trong số phương án tựa.

Để tìm phương án tối ưu, trước hết cần xác định mọ̣t 127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012
phương án tựa đầu tiên (gọi là phương án tựa ban đầu), sử dụng tiêu chuẩn để đánh giá nó (đã tối ưu hãy chưa). Nếu chưa tối ưu thì sử dụng một số quy tắc để hoàn thiện nó cho đến khi tối ưu.

d. Bài toán Suy biến và phương án Suy biến.

- Một phương án mà số ẩn cơ bản khác không ít hơn $\mathrm{m}+\mathrm{n}-\mathrm{I}$ thì đó là phương án tựa suy biến.
- Bài toán có tất cả các phương án tựa không suy biến thì gọi là bài toán không suy biến. Bài toán có ít nhất 1 phương án tựa suy biến thì đó là bài toán suy biến.

Bảng 2.6 giới thiệu 1 phương án tựa suy biến, và tất nhiên đó là bài toán suy biến.

Trong quá trình giải bài toán vận tải, nếu xuất phát từ một phương án tựa suy biến để cải thiện nó thì thông thường ta sẽ thu được một phương án kém hơn, nghĩa là sc̃ bị đẩy xa hơn khỏi mục tiêu. Vì vậy nếu gặp phương án suy biến thì phải bổ sung một số ẩn tự do vào cho dủ $\mathrm{m}+\mathrm{n}$ 1 ẩn cơ bả̉n (giá trị của những ấn cơ bản này bằng 0), coi như đơ là phương án không suy biến, rồi mới áp dụng các quy tắc hoàn thiện phương án.

Bảng 2.6.

	30	25		8
42				
	30			12
25		25		
				8

127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

2.2.5. Dây xích và chu trình

a. Trong ma trận dạng bảng, tập hợp các ô được đánh dấu theo kiểu hai ô dứng cạnh nhau (không nhất thiết liền kề) trên cùng hàng hoạc cùng cộl được gọi là dây xích.

Trên bảng 2.7 có một dây xích được tạo nên bởi các ô được đánh dấu là $(1,1)-(1,2)-(3,2)-(3,4)$.
b. Một dây xích khép kín tạo nên mọ̀ 1 chit trinh. Trong bảng 2.7 giới thiệu một số chu trình có các dạng khác nhau.

Bảng 2.7

Chúy:

+ Số đỉnh cửa chu trình bao giờ cũng chẵn.
+ Số đỉnh của chu trình íl nhất là 4 dỉnh.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012
+ Trong ma trận m.n ($\mathrm{m}>1 ; \mathrm{n}>1$) bất cứ tập hợp nào gồm $\mathrm{m}+\mathrm{n}$ ô cũng chứa ít nhất một chu trình.
+ Phương án tựa của bài toán vận tải có $\mathrm{m}+\mathrm{n}-1$ ẩn cơ bản (ô bận) không tạo nên một chu trình nào.
2.2.6. Các phương pháp tìm Phương án tựa ban dẩu

a. Phương pháp "góc Táy Bác"

Bất đầu từ ô $(1,1)$: phân phối cho ô này khối lượng tối đa có thể, nghīa là cho $\mathrm{x}_{1,1}=\min \left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$.

Nếu $a_{1}<b_{1}$ thì tất cả các ô còn lại trên hàng 1 sẽ bị loại, bởi vì điểm A_{1} không còn khối lượng nữa. Lúc này $\mathrm{x}_{\mathrm{t}, \mathrm{t}}=$ $\mathrm{a}_{1} ; \mathrm{a}_{1}=0 ; \mathrm{b}_{1}=\mathrm{b}_{1}-\mathrm{a}_{1}$

Nếu $a_{1}>b_{1}$ thì tất cả các ô còn lại trên cột 1 sē bị loại, bởi vì điểm B_{1} đã nhận đủ khối lượng. Lúc này $\mathrm{x}_{1,1}=\mathrm{b}_{1}$; $b_{1}=0 ; a_{1}=a_{1}-b_{1}$.

Nếu $\mathrm{a}_{1}=\mathrm{b}_{1}$ thì loại bỏ các ô còn lại trên cột 1 và hàng 1 vì điểm A_{1} đã chuyển hết khối lượng và điểm B_{1} đã nhận đủ khối lượng. Lúc này $\mathrm{x}_{1.1}=\mathrm{a}_{1} ; \mathrm{a}_{1}=0 ; \mathrm{b}_{1}=0$.

Cứ như vậy, ta tiếp tục phân phối cho các ô khác theo hướng Tây Bắc - Đông Nam. Xem ví dụ ở bảng 2.8.

Báng 2.8.

		B_{1}	B_{2}	B_{3}
A_{1}	250	350	100	
A_{2}	250	50	-	
	400	-	300	100

Só ẩn của bài toán là $2.3=6$; Số ẩn cơ bản của phương án tựa là $2+3-1=4$; Phương án tựa trên bảng 2.8 không suy biến.

Phương pháp góc Tây Bắc không quan tâm đến chi phí, vì vậy phương án tựa ban đầu được lập theo phương pháp này thường rất xa phương án tối ưu, nghīa là phải cải thiện phương án ban đầu thành nhiều phương án nữa mới đến phương án tối ưu. Tuy vậy dôi khi ta lại muốn có nhiều phương án tựa để so sánh vì phương án tối ưu không phải lúc nào cũng dùng được trong thực tế.

b. Phương chi phí bé nhất.

Chọn ô có chi phí $\mathrm{C}_{\mathrm{k}, \mathrm{s}}$ nhỏ nhất trong toàn bảng, phân phối tối đa có thể cho ô này, tức là:

$$
x_{k, s}=\min \left(a_{k}, b_{s}\right)
$$

Nếu $a_{k}<b_{\text {, }}$ thì:
$\mathrm{x}_{\mathrm{ks}}=\mathrm{a}_{\mathrm{k}}$; Các ô còn lại trên hàng k đều bằng 0 ;

$$
a_{k}=0 ; b_{s}=b_{s}-a_{k} .
$$

Nếu $\mathrm{a}_{\mathrm{k}}>\mathrm{b}_{\mathrm{s}}$ thì:
$\mathrm{x}_{\mathrm{ks}}=\mathrm{b}_{\mathrm{s}}$: Các ô còn lại trên cột s đều bằng 0 ;

$$
b_{s}=0 ; a_{k}=a_{k}-b_{s}
$$

Nếu $a_{k}=b_{s}$ thì:
$\mathrm{x}_{\mathrm{k}}=\mathrm{a}_{\mathrm{k}}$; Các ô còn lại trên hàng k và cột s đều bằng 0 ;

$$
a_{k}=0 ; b_{s}=0
$$

Sau ô k, s ta tiếp tục chọn ô có chi phí bé nhất trong số các ô còn lại và thực hiện như trên.

Xem ví dụ ở bảng 2.9.
Bảng 2.9.

	B_{1} 50	B_{2} 60	B_{3} 40	B_{4} 70
A_{1} 100	10	9		$\begin{array}{ll} 7 \\ 60 \end{array}$
A_{2} 30	7	3 30	4	6
$\mathrm{A}_{3} 90$	8 50	6 30	8	12

Đầu tiên phân phối tối đa có thể cho ô $(2,2)$ là ô có chi phí bé nhất. Tiếp theo, mặc dù ô $(2,3)$ có chi phí nhỏ nhất trong các ô còn lại, song nó đã bị loại vì điểm A_{2} không còn hàng, lúc này phải chọn ô $(1,3)$. Cứ như vậy ta có phương án tựa ban đầu như ở bảng 2.9 .

Phương pháp này có thuật toán đơn giản, phương án tựa thu được không xa với phương án tối ưu.
c. Phuơng pháp Fogel.

Đây là phương pháp cho ta phương án tựa ban đầu khá gần với phương án tối ưu. Phương pháp Fogel có nội dung nhu sau:

Buớc 1:
Trên cột $\mathrm{j}=1$. tìm 2 ô có giá trị chi phí nhỏ nhât; Gọi D_{1} là giá trị tuyệt đối cúa hiĉ̣u hai giá trị đó. Làm như vậy với
các cột còn lại ta sẽ có n giá trị $\mathrm{D}_{\mathrm{j}}(\mathrm{j}=1 . . \mathrm{n})$, trong số đó $\mathrm{D}_{\text {s }}$, là giá trị lớn nhất ứng với cột s .

Trên hàng $\mathrm{i}=1$, tìm 2 ô có giá trị chi phí nhỏ nhất; Gọi H_{1} là giá trị tuyệt đối của hiệu haj giá trị đó. Làm như vậy với các hàng còn lại ta sẽ có m giá trị $\mathrm{H}_{\mathrm{i}}(\mathrm{i}=1 . . \mathrm{m})$, trong só đó H_{k} là giá trị lớn nhất ứng với hàng k .

Đến đây ô (k, s) được chọn. Phân phối tối đa có thể cho ô này. Tức là:

$$
x_{\mathrm{ks}}=\operatorname{Min}\left(a_{k}, b_{s}\right) ; a_{k}=a_{k}-x_{k s} ; b_{s}=b_{s}-x_{k s}
$$

Từ đây ô (k, s) không tham gia vào việc tính toán ở các bước tiếp theo.

Buớc 2:

Làm tương tự như bước 1 , nhưng không tính toán với ô đã được chọn (vì đã được phân phối rồi), và cũng không xét đến những ô không còn khả nảng phân phối.

Cứ như vậy thực hiện các bước tiếp theo cho đến khi phân phối hết.

Bảng 2.10 là một ví dụ về các bước thực hiện tìm phương án tựa ban đầu theo phương pháp Fogel.

Bảng 2.10.

b_{j}	30	35	60	45	Bưác 1	Bưóc 2	Bưóc 3	Bước 4
20	8	10.	$\begin{aligned} & 4 \\ & 20 \end{aligned}$	5.	1	1	1	-
50	${ }^{6}$	4 35	$\begin{aligned} & 7 \\ & 15 \end{aligned}$	3	1	3	-	-
30	$\begin{array}{\|l\|} \hline 5 \\ 30 \end{array}$	8	9	6	1	1	1	1
70	11	9.	$\begin{gathered} 10 \\ 25 \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 8 \\ 45 \end{array}$	1	2	2	3
Bước 1	1	4	3	2				
Buớc 2	1	.	3	2				
Bưóc 3	3	-	5	1				
Bước 4	6	-	1	2				

Chí ý:

- Các phương pháp góc Tây Bắc, Chi phí bé nhất, Fogel nẻu trên đều cho ta phương án tựa ban đầu gồm các ẩn cơ bản không tạo nên một chu trình nào.
- Nếu số ẩn cơ bản chưa đủ $\mathrm{m}+\mathrm{n}-1$ ẩn thì phải đưa thêm một số ô tự do vào hệ thống các ẩn cơ bản cho đủ $\mathrm{m}+\mathrm{n}-1$ ẩn, sao cho không tạo nên một chu trình nào.

Trong ví dụ ở bảng 2.10, số ẩn cơ bản của phương án tựa ban đầu là 6 , thiếu 1 ẩn. Ta có thể bổ sung vào hệ thống 127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012
các ẩn cơ bản bằng một trong các ẩn tự do sau: $\mathrm{x}_{1.1} ; \mathrm{x}_{2,1}$; $\mathrm{x}_{4.1} ; \mathrm{x}_{3,2} ; \mathrm{x}_{3,3} ; \mathrm{x}_{3,4}$

2.2.7. Tiêu chuẩn tối ưu theo phương pháp Thế vị

Phương pháp thế vị giải bài toán vận tải có hàm mục tiêu Z Min (nếu Max thì giải bài toán với $Q=-Z$) và mô hình bài toán đã được đưa về dạng đóng.

Phương pháp thế vị giải bài toán vận tải dựa trên tiêu chuẩn tối ưu sau đây:

Phương án tựa của bài toán vận tâi là phương án tối tut nếu tồn tại một hệ thống số kiểm tra U_{i} và V_{j} thoả mãn 2 diêu kiện:

Điều kiện 1: $\mathrm{V}_{\mathrm{j}}-\mathrm{U}_{\mathrm{i}}=\mathrm{C}_{\mathrm{ij}}$ đối với các ô chứa ẩn cơ bản;
Điều kiện 2: $\mathrm{V}_{\mathrm{j}}-\mathrm{U}_{\mathrm{i}} \leq \mathrm{C}_{\mathrm{ij}}$ đối với các ô chứa ẩn tự do.
Bảng 2.11.

	120	180	70	80	
150	4_{120}	30	7	6	$U_{1}=0$
100	6	$\begin{aligned} & 3 \\ & 100 \end{aligned}$	4	8	$\mathrm{U}_{2}=2$
200	2	8 50	70	6 80	$U_{3}=-3$
	$V_{1}=4$	$V_{2}=5$	$V_{3}=2$	$V_{3}=3$	N

127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 82

Phương án tựa ban đầu có $\mathrm{m}+\mathrm{n}-1$ ô chứa ẩn cơ bản (nếu thiếu thì thêm một số ô tự do cho đủ, miển là không được tạo thành một chu trình nào). Để đánh giá phương án này (đã tối ưu hay chưa), ta thực hiện các bước sau:

Theo Điều kiện 1 , lập hệ phương trình gồm $\mathrm{m}+\mathrm{n}-1$ phương trình với m ẩn U_{i} và n ẩn V_{j}. Giải hệ phương trình này bằng cách gán cho một ẩn bấl kỳ U_{i} hoặc V_{j} một giá trị bất kì là có thể xác định được các ẩn U_{i} và V_{j} còn lại.

Trên bảng 2.11, các ô bận gồm (1,1), (1,2), (2,2), (3,2), $(3,3),(3,4)$. Cho $U_{1}=0$, ta xác định được hệ thống $U_{\text {, và }} V_{j}$ đối với các ô bận đó.

Phương án đang xét là phương án tối ưu nếu điều kiện thứ hai được thoả mãn. Ta xác định hệ thống số kiểm tra của phương án ở bảng 2.11.

Só kiểm tra theo Điều kiện 2 dối với các ô tự do $V_{j}-U$, được xác định như sau:

$$
\begin{aligned}
& \text { ô }(2,1): 4-0=0<6 \\
& \hat{o}(3,1): 4+3=7>2 \\
& \text { o }(1,3): 2-0=2<7 \\
& \hat{o}(2,3): 2-2-=0<4 \\
& \hat{o}(1,4): 3-0=3<6 \\
& \hat{o}(2,4): 3-2=1<8
\end{aligned}
$$

Vì ô $(3,1)$ có $\mathrm{V}_{1}-\mathrm{U}_{3}=7>\mathrm{C}_{3,1}$ nên phương án không tôí ưu.

2.2.8. Hoàn thiện phương án

Như trên đã nói, nếu phương án tựa là suy biến (không đủ $\mathrm{m}+\mathrm{n}-1$ ẩn cơ bản khác 0) thì đưa thêm vào danh sách ô bận một số ẩn tự do (có giá trị bằng 0) cho đủ $\mathrm{m}+\mathrm{n}-1$ ẩn cơ bản không tạo nên một chu trình nào, và do đó ta có $\mathrm{m}+\mathrm{n}-1$ ô bận. Chú ý bổ sung ô tự do nào cũng dược, miễn là không tạo nên chu trình. Công việc này đuợc gọi là chống suy biến.

Các bước thực hiện như sau:
Buớc 1: Xác định hệ thống số kiểm tra $U_{i} v a ̀ V_{j}$ đối với các ô bận theo Điều kiện 1 ; sau đó đối chiếu với Điều kiện 2. Nếu thoả mãn thì thuật toán kết thúc, nếu không thoả mãn thì thực hiện tiếp các bước sau.

Bước 2: Chọn I ô tư do "có triển vọng nhất" bổ sung vào hệ thống ô bận.

Ô tự do "có triển vọng nhát" được chọn bổ sung là ô (k, s) không thoả mãn điều kiện tối ưu $\left(\mathrm{U}_{\mathrm{k}}-\mathrm{V}_{\mathrm{s}}>\mathrm{C}_{\mathrm{ks}}\right)$, đồng thời hiệu số $\mathrm{V}_{\mathrm{s}}-\mathrm{U}_{\mathrm{k}}-\mathrm{C}_{\mathrm{ks}}$ là lớn nhất.

$$
V_{s}-U_{k}-C_{k s}=\operatorname{Max}\left(V_{j}-U_{i}-C_{i j} .\right.
$$

Trong đó (i,j) là các ô tự do không thỏa mãn Điều kiện 2.
Bước 3: Lạp chu trình giưa ô dược bổ sung với các ô bận khác.

Lúc này ta đã có $\mathrm{m}+\mathrm{n}$ ô bận, và do đó có thể lập được ít nhất 1 chu trình giû̃a một số ô bận, trong đó có ô được bổ sung. Chu trình có một số chẵn đỉnh (ít nhất là 4 dỉnh). Dùng các dấu (+) và (-) lần lượt đánh dấu các đỉnh, bắt đầu từ ô bổ sung mang dấu (+);

Từ ô (k, s) là ô được bổ sung có thể có nhiều chu trình khác nhau được tạo nên với các ô bận khác, song ta chỉ chọn 1 chu trình bất kì trong số đó.

Buớc 4: Xác dịnh luợng tính chuyển và chuyển phuơng án.
Giả sử ô (i,j) có giá trị nhỏ nhất trong số các ô mang dấu (-). Khi đó x_{ij} được gọi là lượng tinh chuyển. Phương án mới được xác định như sau:

- Các ô mang dấu (+) được cộng thêm lượng tính chuyển;
- Các ô mang dấu (-) bị trừ đi lượng tính chuyển;
- Các ô không thuộc đỉnh chu trình thì giữ nguyên;
- Loại ô (i, j) ra khỏi danh sách các ô bận. Phương án mới chỉ còn $\mathrm{m}+\mathrm{n}-1$ ô bận không tồn tại chu trình nào. \hat{O} bị loại (i, j) trong phương án mới có giá trị bằng 0 , nó trở thành ô tự do.

Quay lại thực hiện từ bước 1 .
Vi du: Hoàn thiện phương án cho ở bảng 2.12.
Bảng 2.12.

$$
\mathrm{V}_{1}=4 \quad \mathrm{~V}_{2}=3 \quad \mathrm{~V}_{3}=6
$$

127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

Phương án ở bảng 2.12 có 4 ô bận, đó là phương án klông suy biĉ́n. Số kiểm tra đối với các ô tự do gồm:

$$
\hat{o}(1,3): 6-0-2=4>0 \quad \hat{o}(2,1): 4-2-3=-1<0
$$

Bổ sung ô $(1,3)$ vào danh sách ô bận. Lúc này xuất hiện chu trình với 4 đỉnh như trên bảng 2.10.

Trong số các ô đỉnh mang dấu (-) thì ô $(2,3)$ có giá trị nhỏ nhất. Vì vậy lượng tính chuyển là $\mathrm{x}_{2.3}=10$.

Lạp phương án mới theo quy tắc đã nêu, có kết quả ở bảng 2.13.

Tính số kiểm tra đối với các ô ự̛ do:

$$
\begin{aligned}
& \hat{o}(2,1): 4-2-3=-1<0 \\
& \hat{o}(2,3): 2-2-4=-4<0
\end{aligned}
$$

Đây là phương án tối ưu.
Bảng 2.13.

20	5	${ }^{2} 10$	$U_{1}=0$
3	1	4	
	40		$U_{2}=2$
$\mathrm{V}_{1}=4$	$\mathrm{V}_{2}=$	$V_{3}=$	

2.2.9. Tóm lược trình tự giải bài toán vận tài

a. Đua bài toán về dang chính tác:

- Hàm mục tiêu tiến tới Min.
- Hệ ràng buộc có dạng đóng.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 86

b. Tìm phương án tựa ban dâu:

c. Chống suy biến, nghĩa là nếu phương án tựa không đủ số lượng ẩn cơ bản khác 0 thì chọn các ô tự do bất kỳ bổ sung vào danh sách các ô bận, sao cho:

- Không tạo nên một chu trình nào;
- Có đủ m+n-1 ô bận.
d. Tính các số kiểm tra:
- Tính U_{i} và V_{j} dối với các ô bận;
- Tính $\mathrm{V}_{\mathrm{j}}-\mathrm{U}_{\mathrm{i}}-\mathrm{C}_{\mathrm{ij}}$ dối với các ô tự do.

Nếu tất cả các giá trị $\mathrm{V}_{\mathrm{j}}-\mathrm{U}_{\mathrm{i}}-\mathrm{C}_{\mathrm{i}}$ ứng với các ô tự do đều không dương thì đó là phương án tối ưu; còn nếu có ít nhất 1 giá trị dương thì phải hoàn thiện phương án.
e. Hoàn thiện phuơng án:

- Bổ sung vào danh sách các ô bận một ô tự do có V_{j} - $\mathrm{U}_{\mathrm{i}}-\mathrm{C}_{\mathrm{ij}}$ lớn nhất và lập chu trình giữa ô này với các ô bận khác.
- Tìm lượng tính chuyển và chuyển phương án.

2.2.10. Giải các bài toán ứng dụng

1. Bài toán cung cấp bê tông nhưa (Mụ 2.1.1).

Trở lại với bài toán cung cấp nhựa bê tông từ 3 trạm trộn dến 5 điểm thi công. Phương án tựa ở bảng 2.14 được lập theo phương pháp góc Tây Bắc.

Số kiểm tra ứng với các ô tự do như sau:

$$
\begin{aligned}
& \hat{O}(1,4): 5-0-9=-4 \\
& \hat{O}(1,5):-3-0-14=-17 \\
& \hat{O}(2,1): 8-2-16=-10 \\
& \hat{O}(2,2): 15-2-7=6 \\
& \hat{O}(2,5):-3-2-10=-15 \\
& \hat{O}(3,1): 8+11-9=10 \\
& \hat{O}(3,2): 15+11-25=1 \\
& \hat{O}(3,3): 10+11-10=11(*)
\end{aligned}
$$

Bảng 2.14.

	15	10	20	30	10	$\begin{aligned} & U \\ & 0 \end{aligned}$
30	8 15	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \end{array}$	9	14	
40	16	7	8 15 (-)	3	10	2
15	9	25	10 $(+)$	16	8 10	-11
V_{j}	8	15	10	5	-3	

Só kiểm tra ứng với ô $(3,3)$ có giá trị dương lớn nhất, vì vậy ô $(3,3)$ được chọn bổ sung vào danh sách ô bận.

Trong 4 dỉnh của chu trình thì dỉnh (3,4) mang dấu (-) có $x_{i, 4}$ nhỏ nhắt, đó là lượng tính chuyến.

$$
t=x_{3,4}=5 .
$$

127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

Phân phối t vào các ô theo quy tấc hoàn thiện phương án, đồng thời loại ô $(3,4)$ ra khỏi danh sách các ô bận, ta có phương án mới ở bảng 2.15.

Bảng 2.15.

Số kiểm tra ứng với các ô tự do:

$$
\begin{aligned}
& \hat{O}(1,4): 5-0-9=-4 \\
& \hat{O}(1,5): 8-0-14=-6 \\
& \hat{O}(2,1): 8-2-16=-10 \\
& \hat{O}(2,2): 15-2-7=6\left(^{*}\right) \\
& \hat{O}(2,5): 8-2-10=-4 \\
& \hat{O}(3,1): 8-0-9=-1 \\
& \hat{O}(3,2): 15-0-25=-10 \\
& \hat{O}(3,4): 5-0-16=-11
\end{aligned}
$$

Số kiểm tra ứng với oo (2,2) có giá trị dương lớn nhất, vì vậy ò $(2,2)$ được chon bổ sung vào danh sách ô bận.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT89 2012

Lập chu trình giữa ô $(2,2)$ với các ô $(1,2)-(1,3)-(2,3)$ ta có lượng tính chuyển $\mathrm{t}=\mathrm{x}_{2,3}=10$.

Phân phối t và loại ô $(2,3)$ ra khỏi danh sách ô bận, ta có phương án mới ở bảng 2.16.

Đây là một phương án tựa suy biến vì chỉ có 6 ô bận, thiếu 1 ô bận. Bổ sung ô (1,2) vào danh sách ò bận (không tạo nên chu trình nào).

Bảng 2.16.

Tînh số kiểm tra đối với các ô tự do:

$$
\begin{aligned}
& \hat{O}(1.4): 11-0-9=2 \\
& \hat{O}(1.5): 8-0-14=-6 \\
& \hat{O}(2.1): 8-8-16=-16 \\
& \hat{O}(2,3): 10-8-8=-6 \\
& \hat{O}(2.5): 8-8-10=-10 \\
& \hat{O}(3.1): 8-0-9=-1 \\
& \hat{O}(3.2): 15-0-25=-10 \\
& \hat{O}(3.4): 11-0-16=-5
\end{aligned}
$$

Số kiểm tra ứng với ô $(1,4)$ có giá trị dương duy nhất, đưa ô $(1,4)$ vào danh sách ô bận. Chu trình dược lập nên gồm các ô $(1,4)-(1,2)-(2,2)-(2,4)$.

Lượng tính chuyển $\mathrm{t}=\mathrm{x}_{1,2}=0$.
Vì $\mathrm{t}=0$ nên nội dung phương án mới ở bảng 2.17 không có gì thay đổi, ngoài việc ô $(1,2)$ bị loại khỏi danh sách ô bận. Ta xét phương án ở bảng 2.17.

Tính số kiểm tra đối với các ô tự do:

$$
\begin{aligned}
& \hat{O}(1,2): 13-0-15=-2 \\
& \hat{O}(1,5): 8-0-14=-6 \\
& \hat{O}(2,1): 8-6-16=-14 \\
& \hat{O}(2,3): 10-6-8=-4 \\
& \hat{O}(2,5): 8-6-3=-1 \\
& \hat{O}(3,1): 8-0-9=-1 \\
& \hat{O}(3,2): 13-0-25=-12 \\
& \hat{O}(3,4): 9-0-16=-7
\end{aligned}
$$

Bảng 2.17.

Phương án ở bảng 2.17 là phương án tối ưu:
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012
$\mathrm{x}_{1,1}=15 ; \quad \mathrm{x}_{1,3}=15 ; \quad \mathrm{x}_{2,2}=10 ; \quad \mathrm{x}_{2,4}=30 ;$
$\mathrm{x}_{3,3}=5 ; \quad \mathrm{x}_{3,5}=10 ; \quad \mathrm{Z}=560$.
2. Bài toán bố trí máy thi công. (Mục 2.1.2).

Bài toán có hàm mục tiêu tiến tới Max, để đưa bài toán về dạng chính tắc, ta đổi dấu tất cả các giá trị nãng suất máy ở các công trường, (lúc này đều mang dấu âm) và giải bài toán với $\mathrm{Q}=-\mathrm{Z}$. Trong kết quả cuối cùng, đổi dấu của Q sẽ thu được giá trị Z .

Ngoài ra đây là bài toán mở (Cung > Cầu), nghĩa là tổng số máy hiện có là 123 chiếc, trong khi đó các công trường chỉ cần tổng cộng 112 chiếc, thừa 11 chiếc. Trường hợp này ta bổ sung thêm 1 "công trường phụ", tức là thêm cột thứ 6 vào ma trận kép. Năng suất máy tại các ô của cột này đều bằng 0 .

Bảng 2.18.

Số máy các loai	Còng trừ̀ng (1) cán 32	Công trưoing (2) cán 35	Cöng trường (3) cán 15	Công trưong (4) cán 20	Cōng trư̇ing (5) cấn 10	Công trường Phụ cán 11
I có 22	-41	-34	$.50$ 15	-29	-40	0 7
II có 38	-40	$\begin{array}{rr} -48 & \\ & 27 \end{array}$	-27	-31 7	-44	0 4
III có 45	${ }_{32}^{-55}$	-32	-46	$\begin{array}{\|r\|} \hline-37 \\ \\ \hline \end{array}$	-28	0
\|V có 18	-28	-50 8	-36	-49	$\begin{array}{\|r\|} \hline-55 \\ 10 \end{array}$	0

Từ đó biểu diễn bài toán đã cho ở dạng chính tắc trên bảng ma trận kép. Sử dụng phương pháp chi phí bé nhất để tìm phương án tựa, ta có bảng 2.18.

Phương án ở bảng 2.18 có tổng chi phí $\mathrm{Q}=-5454$, tức tổng năng suất máy là $Z=5454$.

Thực hiện các bước tiếp theo như bài toán thứ nhất. Ta có phương án tối ưu ở bảng 2.19.

Bảng 2.19.

Só máy các loại	Công trường (1) cán 32	Công trường (2) cấn 35	Công trường (3) cân 15	Công trường (4) cấn 20	Công trưàng (5) cán 10	Công trường Phụ cấn 11
1 có 22	-41	-34	$\begin{array}{r} -50 \\ \quad 15 \end{array}$	-29	-40	0 7
Il có 38	-40	$\begin{array}{r} -48 \\ 35 \end{array}$	-27	-31	$\begin{array}{r} -44 \\ 3 \end{array}$	0
III có 45	$\begin{array}{r} -55 \\ 32 \end{array}$	-32	-46	$\begin{array}{r} -37 \\ 9 \end{array}$	-28	0 4
IV có 18	-28	-50	-36	$\begin{array}{r} -49 \\ 11 \end{array}$	$\begin{array}{r} -55 \\ 7 \end{array}$	0

Với phương án tối ưu này tổng nảng suất các máy làm việc trên các công trường là $Z=5579$. Đó cũng là giá trị lớn nhắt.
3. Bài toán điều phối đầu máy. (Mục 2.1.3).

Cān cứ vào dữ liệu đã cho, ta tính được thời gian đầu máy i đợi kéo đoàn tàu j như ở bảng 2.20 . Vì rằng giá trị
của mổi ẩn chỉ có thể là 0 hoậcl, do đó phương án tựa ban đàu được lập theo phương pháp chi phí bé nhất cũng chính là phương án tối ưu.

Phương án tối ưu có nội dung:
Đầu máy 1 kéo tàu số 6 . Thời gian chờ dợi là 1075 phút;
Đầu máy 2 kéo tàu số 1 . Thời gian chờ đợi là 135 phút;
Đầu máy 3 kéo tàu số 2 . Thời gian chờ đợi là 105 phút;
Đầu máy 4 kéo tàu số 3 . Thời gian chờ đợi là 105 phút;
Đầu máy 5 kéo tàu số 4 . Thời gian chờ đợi là 15 phút;
Đầu máy 6 kćo tàu số 5 . Thời gian chờ dợi là 75 phút;
Đầu máy 7 kéo tàu số 7 . Thời gian chờ đợi là 65 phút;

Bảng $\mathbf{2 . 2 0}$.

	Tàu 1	Tau 2	Tàu 3	Tàu 4	Tàu 5	Tàu 6	Tàu 7
ĐM1	180	400	590	740	935	$\begin{gathered} 1075 \\ 1 \end{gathered}$	1185
@M2	$\begin{array}{r} 135 \\ 1 \end{array}$	355	545	695	890	1030	1140
DM3	1325	$\begin{array}{r} 105 \\ 1 \end{array}$	295	445	640	780	890
DM4	1135	1355	$\begin{array}{r} 105 \\ 1 \end{array}$	255	450	590	700
ĐM5	895	1115	1305	$\begin{array}{r} 15 \\ 1 \end{array}$	210	350	460
ĐM6	760	980	1170	1320	$\begin{array}{r} 75 \\ 1 \end{array}$	215	325
EM7	500	720	910	1060	1255	1395	65

127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 94

Tổng thời gian đầu máy chờ đợi là $Z=1575$ phút. Đó cûng chính là giá trị nhỏ nhất.

Chú ý:

1. Trong quá trình hoàn thiện phương án, nếu gặp trường hợp lượng tính chuyển $\mathrm{t}=0$ thuộc $\hat{o}(\mathrm{k}, \mathrm{s})$ thì phương án mới có nội dung không thay đổi ngoài việc ô (k, s) bị loại ra khỏi danh sách các ô bận.

Nếu phương án mới là phương án không tối ưu và suy biến, muốn bổ sung ô tự do vào danh sách ô bận (để chống suy biến) thì lần này không chọn $\hat{o}(\mathrm{k}, \mathrm{s})$ nữa (mà chọn ô khác). Có như vậy mới tránh được vòng lạ̣p luẩn quẩn.
2. Khi giải bài toán vận tải có kích thước lớn, ta thường gặp hai vấn đề gây nhiều khó khăn:

- Chọn ô (k,s) sao cho không tạo thành bất cứ chu trình nào giữa nó và các ô bận;
- Lập một chu trình giữa ô (p,q) với các ô bận khác.

Trong chương "Giải các bài toán quy hoạch trên máy tính điện tử" sẽ giới thiệu thuật toán đơn giản và chặt chẽ để giải quyết hai vấn đề này.

2.3. BÀI TOÁN VẬN TẢl THAM SỐ TUYẾN TÍNH

2.3.1. Mô hình toán học

Bài toán vận tải có hẹ̉ số hàm mục tiêu phụ thuộc tuyến tính vào tham số có dạng sau:

Hàm mục tiêu:

$$
\begin{equation*}
Z=\sum_{i=1}^{m} \sum_{j=1}^{n}\left(C_{i j}^{\prime}+t \cdot C_{i j}^{\prime \prime}\right) \cdot x_{i j}-m i n \tag{2.10}
\end{equation*}
$$

với $\alpha \leq \mathrm{t} \leq \beta$.
Hệ ràng buộc:

$$
\begin{align*}
& \sum_{i=1}^{n} x_{i j}=a_{i}(i=1 . . m) \tag{2.11}\\
& \sum_{i=1}^{m} x_{i j}=b_{j}(i=1 . . n) \tag{2.12}\\
& x_{i j} \geq 0
\end{align*}
$$

Như vậy, bài toán này chỉ khác bài toán vận tải thông thường ở chỗ: các hệ số hàm mục tiêu không phải là hằng mà là hàm bậc nhất của tham số t , tham số này nhận giá trị trong khoảng $[\alpha, \beta]$.

2.3.2. Phương pháp giải bài toán

Bước I : Cho t nhận giá trị cận dưới, tức là $\mathrm{t}=\alpha$ và giải bài toán theo phương pháp thông thường.

Phương án tối ưu nhận được chỉ đúng với $\mathrm{t}=\alpha$.
Bước 2: Tính hẹ thống số kiểm tra U_{i} và V_{j} phụ thuộc tham số t ứng với các ô bận.

Bước 3: Tínly các giá trị $\mathrm{V}_{\mathrm{j}}-\mathrm{U}_{1}-\mathrm{C}_{\mathrm{ij}}$ phụ thuộc tham số t ứng với các ô tự do, lập hệ bấl phương trình theo tiçu chuẩn tối ư:
$\mathrm{V}_{\mathrm{j}}-\mathrm{U}_{\mathrm{i}}-\mathrm{C}_{\mathrm{ij}} \leq 0$ (Có tất cả $\mathrm{m} . \mathrm{n}-\mathrm{m}-\mathrm{n}+1$ bất phương trình).
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 96

Buớc 4:

Giải hệ bất phương trình nói trên. Nghiệm của hệ là $\alpha \leq$ $t \leq \alpha^{\prime}$.

- Nếu khoảng [$\left.\alpha, \alpha^{\prime}\right]$ bao toàn bộ khoảng $[\alpha, \beta]$ thì bài toán đã được giải xong.
- Nếu $\alpha^{\prime}<\beta$ thì phương án tối ưu nêu trên chỉ đúng với t nằm trong khoảng [α, α^{\prime}]. Để hoàn thiện tiếp, đưa ô tự do đầu tiên không thoả mãn khi $\mathrm{t}>\alpha^{\prime}$ vào danh sách ô bận và thực hiện việc chuyển phương án.

Thuật toán tiếp tục cho đến khi $t \geq \beta$.
2.3.3. Giải bài toán ứng dụng với $0 \leq t \leq 3$

Bảng 2.21.

	40	60	80	60
	4+t	5	$2+2 \mathrm{t}$	7+t
60				
	2+t	$3+1$	4+t	5+t
80				
	7+2t	4+t	$8+$ t	$6+$ t
100				

Giải bài toán với $t=0$, ta có phương án tối ưu ở bảng 2.22. Đó là phương án tối ưu khi $\mathrm{t}=0$.

Tìm các số kiểm tra $U_{\text {, và }} V_{j}$ phụ thuộc t của phương án 2.22:

$$
\begin{aligned}
& \mathrm{V}_{3}-\mathrm{U}_{1}=2+2 \mathrm{t} \\
& \mathrm{~V}_{1}-\mathrm{U}_{2}=2+\mathrm{t} \\
& \mathrm{~V}_{2}-\mathrm{U}_{2}=3+\mathrm{t} \\
& \mathrm{~V}_{3}-\mathrm{U}_{2}=4+\mathrm{t} \\
& \mathrm{~V}_{2}-\mathrm{U}_{3}=4+\mathrm{t} \\
& \mathrm{~V}_{4}-\mathrm{U}_{3}=6+\mathrm{t}
\end{aligned}
$$

Cho $\mathrm{U}_{1}=0$ và giải hệ phương trình trên, ta có:

$$
\begin{aligned}
& \mathrm{U}_{1}=0 ; \\
& \mathrm{U}_{2}=-2+\mathrm{t} \\
& \mathrm{U}_{3}=-3+\mathrm{t} \\
& \mathrm{~V}_{1}=2 \mathrm{t} \\
& \mathrm{~V}_{2}=1+2 \mathrm{t} \\
& \mathrm{~V}_{3}=2+2 \mathrm{t} \\
& \mathrm{~V}_{4}=3+2 \mathrm{t}
\end{aligned}
$$

Lập ra giải hẹ̉ bất phương trình theo tiêu chuẩn tối ưu đối với các ô tự do:

$$
\begin{aligned}
& \hat{O}(1,1):(2 t)-0-(4+t) \leq 0 \\
& \hat{O}(1,2):(1+2 t)-0-5 \leq 0 \\
& \hat{O}(1,4):(3+2 t)-0-(7+t) \leq 0 \\
& \hat{O}(2,4):(3+2 t)-(-2+t)-(5+t) \leq 0 \\
& \hat{O}(3,1):(2 t)-(-3+t)-(7+2 t) \leq 0 \\
& \hat{O}(3,3):(2+2 t)-(-3+t)-(8+t)) \leq 0
\end{aligned}
$$

127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 98

Hệ bất phươnng trình có nghiệm $-4 \leq t \leq 2$.
Bảng 2.22.

4+t	5	$\begin{array}{r} 2+2 t \\ 60 \end{array}$	$7+t$	$U_{1}=0$
$2+t$ 40	$\begin{array}{r} 3+\mathrm{t} \\ 20 \end{array}$	$\begin{aligned} & 4+\mathrm{t} \\ & 20 \end{aligned}$	5+t	$U_{2}=-2+t$
$7+2 \mathrm{t}$	$4+t$ 40	$8+1$	60	$U_{3}=-3+t$
$V_{1}=2 \mathrm{t}$	$V_{2}=1+2 t$	$V_{3}=2+2$	$V_{4}=3+2 t$	

Như vậy phương án 2.22 tối ưu khi $-4 \leq t \leq 2$.
Nếu $t>2$ thì bát phương trình thứ hai không thoả mãn. Đưa ô $(1,2)$ vào danh sách ô bận và chuyển phương án. Ta có phương án mới ở bảng 2.23 .

Để đánh giá phương án này, cần tiếp tục xác định hẹ̉ thống số kiểm tra và đối chiếu với tiêu chuẩn tối ưu:

Cho $\mathrm{U}_{1}=0$ và giải hệ phương trình trên, ta có:

$$
\begin{aligned}
& \mathrm{U}_{1}=0 ; \\
& \mathrm{U}_{2}=-2+\mathrm{t} \\
& \mathrm{U}_{3}=1-\mathrm{t} \\
& \mathrm{~V}_{1}=2 \mathrm{t} \\
& \mathrm{~V}_{2}=5 \\
& \mathrm{~V}_{3}=2+2 \mathrm{t} \\
& \mathrm{~V}_{4}=7 .
\end{aligned}
$$

Kiểm tra theo Điều kiện 2, ta có:
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

$$
\begin{aligned}
& \hat{O}(1,1):(2 t)-0-(4+t) \leq 0 \\
& \hat{O}(1,4):(7)-0-(7+t) \leq 0 \\
& \hat{O}(2,2):(5)-(-2+t)-(3+t) \leq 0 \\
& \hat{O}(2,4):(7)-(-2+t)-(5+t) \leq 0 \\
& \hat{O}(3,1):(2 t)-(1-t)-(7+2 t) \leq 0 \\
& \hat{O}(3,3):(2+2 t)-(1-t)-(8+t)) \leq 0
\end{aligned}
$$

Nghiệm của hệ là: $2 \leq t \leq 4$.
Bảng 2.23.

4+t	5	$2+2 \mathrm{t}$	$7+$ t	$\mathrm{U}_{1}=0$
	20	40		
2+t	3+t	4+t	5+t	
40		40		$=$
7+2t	4+t	$8+$ t	6+t	$U_{3}=1-\mathrm{t}$
	40		60	
$V_{1}=2 t$	$\mathrm{V}_{2}=5$	$V_{3}=2$	$V_{4}=7$	

Kết luận vể bài toán:

- Với $0 \leq \mathrm{t} \leq 2$: phương án tối ưu ở bảng 2.22;
- Với $\mathrm{t}>2$: phương án tối ưu ở bảng 2.23.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 100

Chương III

BÀI TOÁN PHÂN PHỐI

3.1. BÀI TOÁN PHÂN PHỐI VÀ THUÂT TOÁN THẾ Vİ MỞ RỘNG

3.1.1. Bài toán dẫn

Một xí nghiệp có nhiệm vụ trong thời gian tới sản xuất 3 loại tà vẹt bê tông cốt thép với sản lượng tương ứng với môi loại là 1500 thanh, 3000 thanh và 2500 thanh.

Ký hiệu: $b_{1}=1500 ; b_{2}=3000 ; b_{3}=2500 ;$
Xí nghiệp có hai loại thép tận dụng từ các nguồn thanh lí (nhưng chất lượng còn tốt) với số lượng mổi loại là 80 tấn và 120 tấn.

Ký hiệu: $\mathrm{a}_{1}=80 ; \mathrm{a}_{2}=120$;
Hai loại thép này đều có thể dùng để chế tạo ba loại tà vẹt nói trên nhưng có hiệu suất sử dụng khác nhau, nghỉa là 1 tấn thép loại i dùng chế tạo tà vẹt loại j sē được P_{ij} thanh.

Mặt khác để sử dụng 1 tấn thép loại i cho việc chế tạo tà vẹt loại j phải tốn một chi phí là C_{ij} triệu đồng.

Vấn đề đặt ra là: hãy phân phối số lượng thép mỗi loại để chế tạo 3 loại tà vẹt bê tông nói trên sao cho tổng chi phí là nhỏ nhất.

Điều này cūng có nghĩa là: nếu gọi x_{ij} à̀ số tấn thép loại i dùng cho tà vẹt loại j thì ta phải tìm các giá trị x_{ij} sao cho tổng tất cả các giá trị $\mathrm{C}_{\mathrm{i}, \mathrm{s}} \mathrm{x}_{\mathrm{i}, \mathrm{j}}$ là nhỏ nhất.

Trên bảng 3.1, số lượng thép mổi loại được ghi bên cạnh; số lượng tà vẹt mỗi loại được ghi ở phía trên bảng.

Trong mỗi ô của bảng:
Phía trên bên trái ghi giá trị chi phí $\mathrm{C}_{\mathrm{i}, \mathrm{j}}$;
Phía dưới bên phải ghi giá trị hiệu suất $\mathrm{P}_{\mathrm{i}, \mathrm{j}}$;
Ở giữa ghi giá trị ẩn $\mathrm{x}_{\mathrm{i}, \mathrm{j}}$. Nếu ẩn bằng 0 thì chổ này để trống.

Mục tiêu của bài toán này là tổng chi phí nhỏ nhất, tức là:

$$
\mathrm{Z}=3 \mathrm{x}_{1,1}+2 \mathrm{x}_{1,2}+5 \mathrm{x}_{1,3}+8 \mathrm{x}_{2,1}+6 \mathrm{x}_{2,2}+7 \mathrm{x}_{2,3}-\mathrm{Min} ;
$$

Ngoài ra phương án sản xuất phải đảm bảo đủ số lượng và chủng loại tà vẹt theo kế hoạch; số lượng thép sử dụng không vượt quá số lượng thép mổi loại hiện có. Cụ thể:

Bảng 3.1.

- Số thép mổi loại được phân phối không vượt quá số thép hiện có:

$$
\begin{aligned}
& \mathrm{x}_{1,1}+\mathrm{x}_{1.2}+\mathrm{x}_{1.3} \leq 80 \\
& \mathrm{x}_{2.1}+\mathrm{x}_{2,2}+\mathrm{x}_{2,3} \leq 120
\end{aligned}
$$

- Phải đảm bảo thực hiện đủ sản lượng của các địa điểm:

$$
\begin{aligned}
& 44 x_{1,1}+36 x_{2,1}=1500 \\
& 30 x_{1.2}+30 x_{2,2}=3000 \\
& 20 x_{1,3}+40 x_{2,3}=2500
\end{aligned}
$$

Điều dễ nhận thấy là bài toán trên có nhiều nét tương dồng với bài toán vận tải. Ta sẽ làm rõ vấn đề này ở mục sau.

3.1.2. Mô hình toán học bài toán Phân phối

a. Mô hình dạng Tổng quát.

Hāy xác định các giá trị x_{ij} sao cho thỏa mãn:
Hàm mục tiêu:

$$
\begin{equation*}
\mathrm{Z}=\sum_{\mathrm{i}-1}^{m} \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{C}_{\mathrm{ij}} \cdot \mathrm{x}_{\mathrm{ij}}-\mathrm{Min} ; \tag{3.1}
\end{equation*}
$$

Với điều kiện ràng buộc hàng:

$$
\begin{equation*}
\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{ij}} \leq \mathrm{a}_{\mathrm{i}} \quad(\mathrm{i}=1 . . \mathrm{m}) ; \tag{3.2}
\end{equation*}
$$

Và diều kiện ràng buộc cột:

$$
\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{P}_{\mathrm{ij}} \cdot \mathrm{x}_{\mathrm{ij}}=\mathrm{b}_{\mathrm{j}} \quad(\mathrm{j}=1 . . \mathrm{n}) ;
$$

Đồng thời các ẩn không âm:

$$
\begin{equation*}
\mathrm{x}_{\mathrm{ij}} \geq 0 . \tag{3.4}
\end{equation*}
$$

Ta biểu diễn các giá trị của 3 ma trận $\mathrm{C}_{\mathrm{i}}, \mathrm{P}_{\mathrm{ij}}$ và X_{ij} trên cùng một bảng số, gọi đó là bảng 3 ma trận (xem bảng 3.2).
b. Mô hình dạng Chính tắc.

Mô hình dạng chính tắc của bài toán phân phối như sau:
Hàm mục tiêu $Z=\sum_{i=1}^{m} \sum_{j=1}^{n} C_{i j} \cdot x_{i j}-M i n ;$
Ràng buộc hàng $\sum_{\mathrm{j}=1}^{\mathrm{n+1}} \mathrm{x}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{i}}(\mathrm{i}=1 . . \mathrm{m})$;
Ràng buộc cột $\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{P}_{\mathrm{ij}} \mathrm{x}_{\mathrm{ij}}=\mathrm{b}_{\mathrm{i}}(\mathrm{j}=1 . . \mathrm{n})$;
Điều kiện tất yếu $\mathrm{x}_{\mathrm{ij}} \geq 0$
Để đưa bài toán về dạng chinh tắc, ta phải biến đổi các bất đẩng thức (3.2) thành các đả̉ng thức bằng cách thêm các ẩn phụ $\mathrm{x}_{\mathrm{i}, \mathrm{n}+1}$. Điều này cũng có nghĩa là ở bảng 3 ma trận phải bổ sung thêm cột thứ $\mathrm{n}+1$, đó là cột phụ.

Có tất cả m ẩn phụ nằm trèn cột phụ $\mathrm{n}+1: \mathrm{x}_{\mathrm{i}, \mathrm{n}, \mathrm{i}} \geq 0$ ($\mathrm{i}=1 . . \mathrm{m}$).

Các ẩn phụ có hệ số hàm mục tiêu $\mathrm{C}_{\mathrm{i}, \mathrm{n}+1}=0$ và hệ số $\mathrm{P}_{\mathrm{i}, \mathrm{n}+\mathrm{l}}=0$.

Bảng (3.2) trình bày bài toán dạng chính tấc, trong dó có 3 ma trận được thể hiện trên cùng một bảng ($\mathrm{C}_{\mathrm{ij}}, \mathrm{P}_{\mathrm{ij}}, \mathrm{x}_{\mathrm{ij}}$).

Phần của bảng không có cột phụ gọi là phấn cơ bản (với i $=1 . . \mathrm{m} ; \mathrm{j}=1 . . \mathrm{n}$).

Bảng 3.2.

a_{1}	$\mathrm{b}_{1} \quad \mathrm{~b}_{2}$		b_{n}	0
	$\mathrm{C}_{1,1}$	$\mathrm{C}_{1.2}$	\ldots	$\mathrm{C}_{1, n}$	
	$\mathrm{p}_{1,1}$	$\mathrm{p}_{1,2}$...	$p_{\text {t, }}$	0
a_{2}	$\mathrm{C}_{2.1}$	$\mathrm{C}_{2.2}$...	$\mathrm{C}_{2 . n}$	0
	$p_{2.1}$	$\mathrm{P}_{2,2}$	\ldots	$\mathrm{p}_{2, n}$	0
			...		0
....					0
a_{m}	$C_{m .1}$	$\mathrm{C}_{\mathrm{m} .2}$...	$\mathrm{C}_{\mathrm{m}, \mathrm{n}}$	0
	$\mathrm{P}_{\mathrm{m}, 1}$	$\mathrm{p}_{\mathrm{m}, 2}$...	$\mathrm{p}_{\mathrm{m}, \mathrm{n}}$	0

Để thuận tiện, từ nay ta gọi các giá trị
a_{i} là "nguyên liệu có" hoạ̃c "nguyên liệu";
b_{j} là "sản lượng cần" hoặc "sản lượng";
$\mathrm{C}_{\mathrm{i} . \mathrm{j}}$ là "chi phí";
$P_{i, j}$ là "hiệu suất" hoặc "năng suất".
Bài toán phân phối có những đặc điểm đáng chú ý sau đây:

1. Nếu như bài toán vận tải bao giờ cũng có nghiệm thì bài toán phân phối có thể vô nghiệm, nếu hệ ràng buộc (3.2) và (3.3) vô lý.
2. Có thể tìm phương án tựa của bài toán phân phối bằng một trong các phương pháp: góc Tây Bắc, chi phí bé nhất và Fogel.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012
3. Phương án tựa của bài toán phân phối có $m+n$ ô bận ($\mathrm{x}_{\mathrm{ij}}>0$), số còn lại là các ô tự do.

Phương án có dủ $m+n$ ô bận là phương án không suy biển, có it hơn $m+n$ ô bận là phương án suy biến.

Bảng 3.3.			
4	3	1	0
	1	3	-
	3	2	0
	4	5	0
6	2	4	-
	4	3	0
5	2	3	0
	5	-	-
	2	3	0
	21	18	0

4. Phương án tựa không suy biĉ́n có thể có hoặc không có chut trinh:

- Nếu các ô trèn cột phụ n+1 đều là ô tự do thì giữa các ô bận tồn tại ít nhá́t một chu trình;
- Nếu không có chu trình thì ít nhất có một ô bận ở cột phụ $\mathrm{n}+1$.

Phương án tựa ở bảng 3.3 có chu trình, dỉnh của chu trình gồm các ô $(1,1),(1,2),(2,2),(2,1)$. Các ô trên cột phụ đĉ̀u là ô tự do.

Phương án tựa ở bảng 3.4 thì không có chu trình, ô $(3,3)$ trên cột phụ có giá trị khác 0 .

Việc phương án tựa có hoạc không có chu trình sẽ tác động đến thuật toán hoàn thiện phương án đó. Đây là một sự khác biệt lớn của bài toán phân phối so với bài toán vận tải.

Bảng 3.4.

3			1			0		
	4			\cdots			-	
6		3			2			0
	2			4				
		4			3			0
2			3			0		
	0,5			2			2,5	
		2			3			0

5. Bài toán vận tải là một dạng riêng của bài toán phân phối. Bài toán phân phối nếu chứa các yếu tố sau đây thì nó là bài toán vận tải:

- Hiệu suất của các loại nguyên liệu dùng để chế tạo các sản phẩm khác nhau đều bằng nhau và bà̀ng R (R là hằng số hoạac tham số). Nếu nhân giá trị sản lượng của các sản phẩm $\left(b_{i}\right.$, với R. lức là:

$$
b_{1}=b_{1} \cdot R ; b_{2}=b_{2} \cdot R ; \ldots b_{n}=b_{n} \cdot R
$$

ta sẽ có bài toán vận tải quen thuộc.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

- Hiệu suất của các loại nguyên liệu dùng chế tạo cho cùng một loại sản phẩm là bằng nhau và bằng K_{j} (K_{i} là hằng số hoặc tham số). Nếu nhân giá trị sản lượng của các sản phẩm $\left(b_{i}\right)$ với K_{j}, tức là:

$$
b_{1}=b_{1} \cdot K_{1} ; b_{2}=b_{2} \cdot K_{2} ; \ldots b_{n}=b_{n} \cdot K_{n}
$$

ta sẽ có bài toán vận tải quen thuộc.

3.1.3. Lập phương án tựa ban đẩu

Có thể sử dụng một trong các phương pháp: góc Tây Bắc, chi phí bé nhất hoạ̉c Fogel để lập phương án tựa ban đầu, song cần chú ý những vấn đề sau đây:

Khi phân phối một lượng x_{ij} cho ô (i, j) phải đảm bảo 2 diều kiện:

- Thứ nhất: số lượng nguyên liệu x_{ij} không vượt quá số lượng nguyên liệu loại i còn lại;
- Thứ hai: sản lượng do x_{ij} tấn nguyên liệu loại i làm nên không vượt quá sản lượng mà sản phẩm j còn thiếu.

Chẳng hạn phương án ở bảng 3.4 được lập theo phương pháp góc Tây Bắc. Phân phối 4 tấn nguyên liệu cho ô (1,1) sẽ thực hiện được sản lượng $\mathrm{x}_{1.1} . \mathrm{P}_{1,1}=4.3=12$. Phân phối tiếp cho ô $(1,2) 2$ tấn nguyên liệu loại hai sẽ thực hiện được $2.4=8$. Vì sản lượng còn thiếu 1 tấn nên phân phối cho ô (1,3) 0,5 tấn nguyên liệu loại ba. Như vậy cột 1 đủ 21 tấn sản phẩm.
b. Khi thực hiện phân phối (bầng 1 trong 3 phương pháp nới trên) chỉ phân phời cho các ô ở các cột chinh.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

- Nếu còn thừa một lượng b_{k}^{\prime} (số nguyên liệu loại k còn thừa) chưa phân phối hết thì phân phân phối b_{k}^{\prime} cho oo ở cột phụ: $\mathrm{x}_{\mathrm{k}, \mathrm{n}+1}=\mathrm{b}_{\mathrm{k}}^{\prime}$ (xem bảng 3.4).
- Nếu cột s còn thiếu một lượng T , trong khi các loại nguyên liệu đã phân phới hết rồi, thì phải thêm nguyên liệu giả: $\mathrm{a}_{\mathrm{m}+1}=\mathrm{T}$. Nguyên liệu giả được phân phối cho các sản phẩm loại s thì đương nhiên đó là các ẩn giả.

$$
\mathrm{x}_{\mathrm{m}+\mathrm{l}, \mathrm{~s}}=\mathrm{T} \text { là ẩn giả. }
$$

Ẩn giả có hệ số hàm mục tiêu $\mathrm{C}_{\mathrm{m}+1 \mathrm{~s}}=\mathrm{M}$ là số dương lớn tuỳ ý, còn hệ số $\mathrm{P}_{\mathrm{m}+1, \mathrm{~s}}=1$.

Người ta gọi bài toán có ẩn giả là bài toán M.
Phương án tối ưu của bài toán M cūng là phương án tói ưu của bài toán gốc nếu ẩn giả trong lời giải có giá trị bằng không.

Vi dụ: Lập phương án tựa ban đầu bằng phương pháp góc Tây Bấc đối với bài toán dẫn ở mục 3.1.1:

Trước hết đưa bài toán về dạng chính tắc, ta có:

$$
\mathrm{Z}=5 \mathrm{x}_{1,1}+2 \mathrm{x}_{1.2}+3 \mathrm{x}_{1.3}+8 \mathrm{x}_{2,1}+6 \mathrm{x}_{2.2}+4 \mathrm{x}_{2,3}-\mathrm{Min} ;
$$

Trình bày bài toán trên bảng 3.5:
Bảng 3.5.

	1500	3000	2500	
	5	2	3	0
80	37,5	42,5	-	-
	40	30	50	0
	8	6	4	0
120	-	57,5	62,5	-
	20	30	20	0
1250			M	
			1250	
			1	

Xét cộl $\mathrm{j}=1$: Nhu cằu sản lượng là 1500 thanh tà vẹt.
Phân phối 37,5 tấn thép loại I cho ô $(1,1)$ sẽ chế tạo được $37,5 \times 40=1500$ thanh tà vẹt. Cột 1 đã thỏa mãn.

Xét cột $\mathrm{j}=2$: Nhu cấu sản lượng là 3000 thanh tà vẹt.
Còn 42.5 tấn thép loại I phân phối hết cho ô (1,2) sẽ thực hiện được khối lượng $42,5 \times 30=1275$ thanh. còn thiếu $3000-1275=1725$ thanh.

Phân phối 57,5 tấn loại II cho ó $(2,2)$ sẽ thực hiện được khối lượng $57.5 \times 30=1725$. Cột thứ hai đã thoả mãn.

Xét cột $\mathrm{j}=3$: nhu cầu là 2500 .
Nguyèn liệu Ioại I đã hết.
Nguyên liệu loại II chỉ còn $120-57,5=62,5$ tấn.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 110

Phân phối cả 62,5 tấn này cho ô $(2,3)$, sẽ thực hiện được khối lượng $62,5 \times 20=1250$. Cột thứ ba vẩn còn thiếu $2500-1250=1250$ thanh.

Thép cả hai loại đã hết. Ta dùng 1250 tấn "thép giả" (có hiệu suất là 1) để phân phối cho ô $(3,3)$.

Phương án tựa nêu trên có nội dung như sau:

$$
\begin{aligned}
& x_{1.1}=37,5 \\
& x_{1,2}=42,5 \\
& x_{2,2}=57,5 \\
& x_{2.3}=62,5 \\
& x_{5,3}=1250
\end{aligned}
$$

Các ẩn khác bà̀ng không.
Hàm mục tiêu lúc này là:

$$
\begin{aligned}
\mathrm{Z} & =30 \times 5+50 \times 2+15 \times 8+50 \times 6+55 \times 4+1400 \mathrm{M} \\
& =890+1400 \mathrm{M} . \\
& \left(\mathrm{x}_{3,3}=1250 \text { là ẩn giả; } \mathrm{M} \text { là số dương lớn tuỳ ý }\right) .
\end{aligned}
$$

Các giá trị x_{ij} của phương án tựa ban đầu được thể hiện trên bảng 3.5 .

3.1.4. Tiêu chuẩn tối ưu của bài toán phân phối

Cunng tương tự như bài toán vận tải, tiêu chuẩn tối ưu của bài toán phân phối được xây dựng trên cơ sở bài toán đối ngẫu của chính bài toán đó.

Tiêu chuẩn tối ưu được phát biểu như sau:

Một phương án được coi là tối ưu nếu:
<a> Đối với các ố bận của phần cơ bản (tức là các ố có $\mathrm{i}=1 \ldots \mathrm{~m}$ và $\mathrm{j}=1 \ldots \mathrm{n}$) tồn tại hệ thống số kiểm tra U_{i} và V_{j} sao cho:

$$
\begin{equation*}
P_{i j} \cdot V_{j}-U_{i}=C_{i j} . \tag{3.9}
\end{equation*}
$$

 Nếu có ô bận nằm trên cột phụ thì:

$$
\begin{equation*}
\mathrm{U}_{\mathrm{i}}=0(\mathrm{i}=1 . . \mathrm{m}) . \tag{3.10}
\end{equation*}
$$

<c> Đối với các ô tự do của phần cơ bản thì:

$$
\begin{equation*}
P_{i j} \cdot V_{j}-U_{i} \leq C_{i j} \tag{3.11}
\end{equation*}
$$

< $\mathrm{d}>$ Đối với các 0 tự do trên cột phụ thì:

$$
\begin{equation*}
\mathrm{U}_{\mathrm{i}} \geq 0 \tag{3.12}
\end{equation*}
$$

3.1.5. Xác định hệ thống số kiểm tra U_{i} và V_{i}

a. Trường hợp phương án tưa có chu trình:

Nếu chu trình có k đỉnh thì công thức (3.9) tạo nên hệ phương trình gồm k phương trình và k ẩn. Giải hệ này ta sẽ nhận được các số kiểm tra liên quan đến các đỉnh đó. Từ đó dễ dàng xác định giá trị của các số kiểm tra khác.

Vi du:
Phương án tựa ở bảng 3.6 tạo nên chu trình giữa các ô $(1,2)-(1,3)-(2,3)-(2,2)$. Tîm U_{i} và V_{j} trên 4 đỉnh này, ta có:

$$
\left.\begin{array}{l}
2 \mathrm{~V}_{2}-\mathrm{U}_{1}=1 \\
4 \mathrm{~V}_{3}-\mathrm{U}_{1}=3 \\
3 \mathrm{~V}_{2}-\mathrm{U}_{2}=2 \\
2 \mathrm{~V}_{3}-\mathrm{U}_{2}=4
\end{array}\right\}
$$

127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

Nghiệm của hệ phương trình là:

$$
\mathrm{U}_{1}=0 ; \mathrm{U}_{2}=-1 / 2 ; \mathrm{V}_{2}=1 / 2 ; \mathrm{V}_{3}=3 / 4 ;
$$

Đối với ô bận $(3,2)$ vì đã có $V_{2}=1 / 2$ nên $V_{2} \cdot 3-U_{3}=3$. từ đó $\mathrm{U}_{3}=-3 / 2$.

Đối với ô bận (3,1) vì đā có $U_{3}=-3 / 2$ nên $V_{1} \cdot 4-U_{3}=4$, từ đó $\mathrm{V}_{1}=5 / 8$.

Bảng 3.6.

	32	30	38		$U_{1}=0$
11	4	1	3	0	
	-	6	5		
	3	2	4	0	
13	2	2	4	0	
	-	4	9		$U_{2}=-1 / 2$
	4	3	2	0	
10	4	3	2	0	
	8	2	-		$\mathrm{U}_{3}=-3 / 2$
	4	3	5	0	

$$
V_{1}=5 / 8 \quad V_{2}=1 / 2 \quad V_{3}=3 / 4
$$

b. Truờng hơp phuơng án tựa không có chu trình.

Trường hợp này có ít nhất một ô bận ở cột phụ - chẳng hạn $\hat{O}(\mathrm{k}, \mathrm{n}+1)$. Lúc này ta cho $\mathrm{U}_{\mathrm{k}}=0$ và tính dược các giá trị U_{i} và V_{j} khác.

Vi dụ: Ta có bài toán với phương án tựa như ở bảng 3.7.
Trước hết, ó $(3,4)$ là ô bận thuộc cột phụ, cho $\mathrm{U}_{3}=0$. Từ 127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012
đó tính được các giá trị U_{i} và V_{j} khác đối với các ô bận theo công thức (3.9).

Trước hết, ó $(3,4)$ là ô bận thuộc cột phụ, cho $\mathrm{U}_{3}=0$. Từ đó tính được các giá trị U , và V_{j} khác theo công thức (3.9).

3.1.6. Đánh giá phương án

Để đánh giá phương án, ta sử dụng các tiêu chuẩn $\langle\mathrm{c}\rangle$ và <d>. Ví dụ:

- Đánh giá phương án tựa ở báng 3.6:
ô($1, \mathrm{l}$): $\frac{5}{8} \cdot 3-0=\frac{15}{8}<\mathrm{C}_{1.1}=4$ thoả mãn $\langle\mathrm{c}\rangle$
$\hat{o}(2.1): \frac{5}{8} .4+\frac{1}{2}=3>\mathrm{C}_{2.1}=2 \quad$ không thoả mãn <c>
ô $(3,3): \frac{3}{4} .5+\frac{3}{2}=\frac{21}{4}>C_{3.3}=2$ không thoả män $\langle\mathrm{c}\rangle$
ô $(1,4): U_{1}=0$, thoả mãn $\langle\mathrm{d}>$
ô (2,4): $\mathrm{U}_{2}=-\mathrm{I} / 2$, không thoả mãn $\langle\mathrm{d}>$
ô $(3,4)$: $U_{3}=-3 / 2$, không thoả mãn $\langle d>$
Kết luận: Phương án không tối ưu.
- Đánh giá phương án tựa ở bảng 3.7:
ô (1,3): $\frac{2}{5} \cdot 4+\frac{27}{15}=\frac{51}{15}>\mathrm{C}_{1.3}=3$
ô $(2,1): \frac{11}{5} \cdot 3+\frac{16}{5}=\frac{49}{5}>C_{2,1}=2$
ô $(3,1): \frac{11}{5} \cdot 4-0=\frac{44}{5}>C_{3.1}=4$
$\mathrm{U}_{1}<0$
$\mathrm{U}_{2}<0$
Kết luận: Phương án không tối ưu.

3.1.7. Hoàn thiện phương án

Nếu phương án không thoả mãn tiêu chuẩn tối ưu thì nó sẽ được hoàn thiện theo trình tự:

- Chọn 1 ô tự do trong số những ô tự do không thoả mân tiêu chuẩn $\langle\mathrm{c}\rangle$ hoạac $<\mathrm{d}>$ dưa vào danh sách ô bận.
- Xác định lượng tính chuyển W.
- Lập phương án mới.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

a. Tìm ô tư do được chọn:

Ô tự do được chọn là ô (k, s) nằm trong số các ô tự do không thoả mãn tiêu chuẩn (c) hoặc (d), đồng thời:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{ks}}=\operatorname{Max}\left[\left(\mathrm{P}_{\mathrm{ij},} \mathrm{~V}_{\mathrm{j}}-\mathrm{U}_{\mathrm{i}}-\mathrm{C}_{\mathrm{i} j}\right) \text { và }\left|\mathrm{U}_{\mathrm{i}}\right|\right] \tag{1.13}
\end{equation*}
$$

Trong đó:
$P_{i j} V_{j}-U_{i}-C_{i j}$ ưng với các ô tự do của phần cơ bản;
$\left|\mathrm{U}_{\mathrm{I}}\right|$ ứng với các ô tự do trên cột phụ.
Như vậy, trước hết cần tính các giá trị $\mathrm{P}_{\mathrm{ij}} \mathrm{V}_{\mathrm{j}}-\mathrm{U}_{\mathrm{i}}-\mathrm{C}_{\mathrm{ij}}$ ứng với các ô tự do trong phần cơ bản không thoả mãn tiêu chuẩn tối ưu. Tiếp theo, so sánh các kết quả đó với các giá trị $\left|\mathrm{U}_{\mathrm{i}}\right|$ ưng với các ô tự do trên cột phụ. $\mathrm{F}_{\mathrm{k}, \mathrm{s}}$ là giá trị lớn nhất trong số đó, và ô được chọn là ô (k, s).

Ví dư: Tìm ô được chọn thuộc phương án tựa ở bảng 3.7:
ô (1,3): $4 .(2 / 5)+27 / 15-3=0,4$
ô $(2,1): 4 .(11 / 15)+16 / 5-2=4,13$
ô $(3,1): 4 .(11 / 15)-0-4=-1,1$
ô (3,2): -3.(6/15) $-0-3=-63 / 15$
ô (1,4): $\left|-\frac{27}{15}\right|=1,8$
ô $(2,4):\left|-\frac{16}{5}\right|=3,2$
Vậy ô dược chọn là ô (2,1).
b. Xác định Luợng tính chuyển và chuyển phuơng án:

Trong phương án mới, ô tự do được chọn (k, s) sẽ nhận 127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 116
giá trị W , tức là $\mathrm{x}_{\mathrm{ks}}=\mathrm{W}$. Còn các ô khác sẽ được nhận thêm một số gia $\Delta \mathrm{x}_{\mathrm{ij}}$ (có thể âm, dương, không), giá trị mới của ó bận là $\mathrm{x}^{\prime}{ }_{\mathrm{ij}}=\mathrm{x}_{\mathrm{ij}}+\Delta \mathrm{x}_{\mathrm{ij}}$.

Các giá trị $\Delta \mathrm{x}_{\mathrm{ij}}$ được xác định nhờ giải hệ phương trình:

$$
\left.\begin{array}{l}
\sum_{\mathrm{i}=1}^{\mathrm{nc+1}} \Delta_{\mathrm{ij}} \cdot \mathrm{x}_{\mathrm{ij}}=0 \tag{3.14}\\
\sum_{\mathrm{i}=1}^{\mathrm{m+1}} \mathrm{P}_{\mathrm{ij}} \Delta \mathrm{x}_{\mathrm{ij}}=0 \\
\Delta \mathrm{x}_{\mathrm{ks}}=\mathrm{W}
\end{array}\right\}
$$

Nghiẹ̀m của hệ có dạng:

$$
\begin{equation*}
\Delta x_{i j}=\beta_{i j} W \tag{3.15}
\end{equation*}
$$

Khi đó W được xác định như sau:

$$
\begin{equation*}
W=\operatorname{Min}_{\left(\beta_{1},<0\right)} \frac{x_{i j}}{\left|\beta_{u j}\right|}=\frac{x_{t r}}{\left|\beta_{u t}\right|} \tag{3.16}
\end{equation*}
$$

Chú ý:
Việc xác định các giá trị $\Delta \mathrm{x}_{\mathrm{ij}}$ của hệ (3.14) phải thực hiện theo nguyên tắc sau:
a. Đối với phương án không có ó bận trên cột phụ thì các số gia $\Delta \mathrm{x}_{\mathrm{ij}}$ của hệ (3.14) chỉ bao gồm các ô đỉnh của chu trình, các ô bận khác nếu thuộc phần cơ bản thì không xét đến.
b. Đối với phương án có ô bận trên cột phụ thì ngoài nguyên tắc trên còn phải tính số gia choo ô bận trên cọ̉t phụ đó.
c. Đối với bài toán có ô bận trên hàng giả (bài toán M)
thì ngoài nguyên tắc a , còn phải tịnh số gia cho ô bận trên hàng giả đó.

Vi dul 1:
Hoàn thiện phương án tựa ở bảng 3.7. Đây là phương án không có chu trình.

Ô được chọn là ô $(2,1)$ vì thoả mãn (3.13).
Các ô thuộc chu trình gồm: $(2,1)-(2,2)-(1,2)-(1,1)$.

$$
\Delta \mathrm{x}_{2.1}=\mathrm{W} .
$$

Hàng thứ hai:

$$
\mathrm{W}+\Delta \mathrm{x}_{2.2}=0 ; \Delta \mathrm{x}_{2.2}=-\mathrm{W} ; \beta_{2.2}=-1 ;
$$

Cột thứ nhất:

$$
3 \Delta x_{1,1}+4 W=0 ; \Delta x_{1,1}=(-4 / 3) W ; \beta_{1.1}=-4 / 3 ;
$$

Hàng thứ nhất:

$$
\Delta \mathrm{x}_{1.1}+\Delta \mathrm{x}_{1.2}=0 ; \Delta \mathrm{x}_{1.2}=(4 / 3) \mathrm{W} ; \beta_{1.2}=4 / 3 ;
$$

Ta đă có $\beta_{2,2}=-1$ và $\beta_{1,1}=-4 / 3$

$$
\begin{aligned}
\mathrm{W} & =\operatorname{Min}\left[\mathrm{x}_{1.1} /\left|\beta_{1.1}\right| ; \mathrm{x}_{2.2} /\left|\beta_{2.2}\right|\right] \\
& =\operatorname{Min}[(32 / 3) /(4 / 3) ;(88 / 9) /(1)]=8 .
\end{aligned}
$$

Với $W=8$, tính các $\Delta_{\mathrm{ij}} \mathrm{X}_{\mathrm{ij}}$ và $\mathrm{x}_{\mathrm{ij}}{ }_{\mathrm{i}}$:

$$
\begin{array}{ll}
\Delta x_{2,2}=-8 ; & x_{2,2}^{\prime}=88 / 9-8=16 / 9 \\
\Delta x_{1,1}=(-4 / 3) \cdot 8=-32 / 3 ; & x_{1,1}^{\prime}=32 / 3-32 / 3=0 \\
\Delta x_{1,2}=(3 / 2) \cdot 8=12 ; & x_{1,2}^{\prime}=1 / 3+12=37 / 3 \\
\Delta x_{2,1}=W=8 ; & x_{2,1}^{\prime}=0+8=8
\end{array}
$$

Phương án mới được ghi ở bảng (3.8).
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 118

Bảng 3.8.

Vi dụ 2: Cải thiện phương án tựa ở bảng 3.6. Đây là phương án có chu trình giữa các ô $(1,2)-(1,3)-(2,3)-(2,2)$.
\hat{O} dược chọn là ô $(3,3)$ vì thoả mãn $(3,13)$.

$$
\Delta \mathrm{x}_{3,3}=\mathrm{W} .
$$

Việc thêm ô $(3,3)$ vào danh sách ô bận đã tạo nên chu trình mới giữa các ô $(3,3)-(3,2)-(2,2)-(2,3)$.

Như vậy ta phải tìm giá trị của 5 số gia.
$\Delta \mathrm{x}_{1,2} ; \Delta \mathrm{x}_{1,3} ; \Delta \mathrm{x}_{2,2} ; \Delta \mathrm{x}_{2,3}$ và $\Delta \mathrm{x}_{3,2}$ (đã có $\Delta \mathrm{x}_{3,3}=\mathrm{W}$) bằng cách giải hệ phương trình sau:
$\left.\begin{array}{ll}\Delta \mathrm{x}_{3,2}+\mathrm{W} & =0 \\ 2 \Delta \mathrm{x}_{1,2}+3 \Delta \mathrm{x}_{2,2}+3 \Delta \mathrm{x}_{3,2} & =0 \\ 4 \Delta \mathrm{x}_{1.3}+2 \Delta \mathrm{x}_{2,3}+5 \mathrm{~W} & =0 \\ \Delta \mathrm{x}_{1,2}+\Delta \mathrm{x}_{1,3} & =0 \\ \Delta \mathrm{x}_{2,2}+\Delta \mathrm{x}_{2 ;} & =0\end{array}\right\}$

Giải hệ phương trình trên, ta có:

$$
\begin{array}{ll}
\Delta \mathrm{x}_{1,2}=\frac{9}{8} \mathrm{~W} ; & \beta_{1,2}=\frac{9}{8} \\
\Delta \mathrm{x}_{2,2}=\frac{1}{4} \mathrm{~W} ; & \beta_{2,2}=\frac{1}{4} \\
\Delta \mathrm{x}_{3,2}=-\mathrm{W} ; & \beta_{3,2}=-1 \\
\Delta \mathrm{x}_{1,3}=-\frac{9}{8} \mathrm{~W} ; & \beta_{1,3}=\frac{9}{8} \\
\Delta \mathrm{x}_{2,3}=-\frac{1}{4} \mathrm{~W} ; & \beta_{2,3}=-\frac{1}{4}
\end{array}
$$

Lúc này, lượng tính chuyển W được xác định như sau:

$$
\begin{aligned}
& \mathrm{W}=\operatorname{Min}\left[\frac{\mathrm{x}_{3,2}}{\mid \beta_{3,2} ;} ; \frac{\mathrm{x}_{1,3}}{\mid \beta_{1,3}} ; \frac{\mathrm{x}_{2.3}}{\left|\beta_{2,3}\right|}\right] \\
& \operatorname{Min}=\left[2.1 ; 5 \cdot \frac{8}{9} ; 9.4\right]=2
\end{aligned}
$$

Tính các $\Delta \mathrm{x}_{\mathrm{ij}}$ và $\mathrm{x}^{\prime}{ }_{\mathrm{ij}}$ với $\mathrm{W}=2$.

$$
\begin{array}{ll}
\Delta \mathrm{x}_{1,2}=\frac{9}{8} \cdot 2=\frac{9}{4} ; & \Delta \mathrm{x}_{1.2}^{\prime}=6+\frac{9}{4}=\frac{33}{4} \\
\Delta \mathrm{x}_{2,2}=\frac{1}{4} \cdot 2=\frac{1}{2} ; & \mathrm{x}_{2,2}^{\prime}=4+\frac{1}{2}=\frac{9}{2} \\
\Delta \mathrm{x}_{3,2}=-2 & ; \\
\Delta \mathrm{x}_{1,3}=-\frac{9}{8} \cdot 2=-\frac{9}{4} ; & \Delta \mathrm{x}_{3,2}^{\prime}=2-2=5-\frac{9}{4}=\frac{11}{4}
\end{array}
$$

$$
\begin{aligned}
& \Delta x_{2,3}=-\frac{1}{4} \cdot 2=-\frac{1}{2} ; \quad x_{2,3}^{\prime}=9 \cdot \frac{1}{2}=\frac{17}{2} \\
& \Delta x_{3,3}=2 ; x_{3,3}^{\prime}=0+2=2 .
\end{aligned}
$$

Phương án mới được ghi ở bảng 3.9.
Bảng 3.9.

Ví dư 3: Giải bài toán đã phát biểu ở mục 3.1.1:
Trên bảng 3.10, phương án tựa được lập theo phương pháp chi phí bé nhất:

Phân phối toàn bộ 80 tấn thép loại I cho ô $(1,2)$ là ô có chi phí bé nhất. Cột số 2 chỉ mới đạt sản lượng $80.30=2400$ thanh tà vẹt, còn thiếu 600 thanh.

Các ô có chi phí bé nhất còn lại lần lượt là $(1,1)$ và $(1,3)$, nhưng thép loại I đã hết, không còn khả năng phân phối.

Lúc này ó (2,2) có chi phí bé nhất, phân phối 20 tấn 127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012
thép loại II cho nó, cột số 2 dược thêm sản lượng $20.30=600$, vừa đủ số tà vẹt theo kế hoạch.

Tiếp theo là ô $(2,3)$, phân phối tối đa 62,5 lấn thép loại II để cột 3 đạt sản lượng kế hoạch: $62,5.40=2500$.

Thép loại $I I$ chỉ còn 37,5 tấn, phân phối nốt cho $\hat{0}(2,1)$. Sản lượng cột số 1 lúc này là $37,5.36=1350$ thanh, còn thiếu 150 thanh.

Thép các loại đã hết, ta dùng 150 tấn "thép giả" với hiệu suất bầng 1 dể phân phối choo ô $(3,1)$.

Đáy là bài toán M mà ta đã làm quen ở trên.
Bảng 3.10 .

	1500	3000	2500		
80	3 - 45	2 80 30	$\begin{array}{lll} 5 & & \\ & 0 & \\ & & 20 \\ & & \end{array}$	0 0	$U_{1}=-7$
120	$\begin{array}{\|r} \hline 8 \\ 37,5 \\ 36 \end{array}$	$\begin{array}{r} 6 \\ 20 \\ 30 \end{array}$	$\begin{array}{r} \hline 7 \\ 62,5 \\ \quad 40 \end{array}$	0	$U_{2}=-11$
	M 150 1	$\begin{array}{\|cc\|}\mathrm{M} & \\ & \\ & \\ & \\ & \\ & \\ \end{array}$	M 1	0	$\mathrm{U}_{3}=(-1 / 12)+\mathrm{M}$

Giá trị hàm mục ticu của phương án:

$$
\begin{aligned}
Z & =2.80+8.37 .5+6.20+7.62 .5+\mathrm{M} .150 \\
& =10170+150 \mathrm{M} .
\end{aligned}
$$

Phương án suy biến vì thiếu 1 ô bận. Ta bổ sung $0(1,3)$ vào danh sách các ô bận.

Sau khi tính hệ thống số kiểm tra U_{i} và V_{j} đối với các ô bận, ta tìm được ô (1,1) có giá trị thỏa mãn (3.13). Đura ô (1,1) vào danh sách ô bận, ta có chu trình với các ô đỉnh: $(1,1)-1,2)-(2,2)-(2,1)$.

Xác định lượng tính chuyển và các số gia:
$\Delta \mathrm{x}_{1.1}=\mathrm{W}$.
$\Delta \mathrm{x}_{1.2}=-\mathrm{W} ; \beta_{1.2}=-1$;
$30 \Delta \mathrm{x}_{1.2}+30 \Delta \mathrm{x}_{2.2}=0$, do đó $\Delta \mathrm{x}_{2.2}=-\Delta \mathrm{x}_{1.2}=\mathrm{W}$;
$\Delta \mathrm{x}_{2,1}=-\mathrm{W} ; \beta_{2,4}=-1$
$45 \Delta x_{1,4}+36 \Delta x_{2.1}+\Delta x_{3,1}=0$, do đó $\Delta x_{3,1}=-9 \mathrm{~W} ; \beta_{3,1}=-9$;
$\mathrm{W}=\operatorname{Min}\left[\left(\mathrm{x}_{1,2} / 1\right) ;\left(\mathrm{x}_{2,2} / 1\right) ;\left(\mathrm{x}_{3,1} / 9\right)\right]$
$=\operatorname{Min}[(80) ;(37,5) ;(150 / 9)]=150 / 9$.
Với $W=150 / 9$, ta xác định các số gia và giá trị mới của các ô:

$$
\begin{aligned}
& \Delta \mathrm{x}_{1,1}=150 / 9 ; \mathrm{x}_{1,1}^{\prime}=0+150 / 9=150 / 9 ; \\
& \Delta \mathrm{x}_{1,2}=-150 / 9 ; \mathrm{x}_{1,2}=80-150 / 9=570 / 9 ; \\
& \Delta \mathrm{x}_{2,2}=150 / 9 ; \mathrm{x}_{2,2}^{\prime}=20+150 / 9=330 / 9 ; \\
& \Delta \mathrm{x}_{2.1}=-150 / 9 ; \mathrm{x}_{2,1}=37,5-150 / 9=187,5 / 9 ; \\
& \Delta \mathrm{x}_{3,1}=-150 ; \mathrm{x}_{3,1}^{\prime}=150-150=0 .
\end{aligned}
$$

Phương án mới trên bảng 3.11 là phương án tối ưu, có giá trị hàm mục tiêu là:
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

$$
\begin{aligned}
\mathrm{Z} & =3 .(150 / 9)+2 .(570 / 9)+8 .(187,5 / 9)+6 .(330 / 9)+ \\
7 .(62.5) & =983,7 .
\end{aligned}
$$

Bảng 3.11.

	1500	3000	2500	
80	3	2	5	0
	150/9	570/9		
	45	30	20	0
120	8	6	7	0
	187,5/9	330/9	62,5	
	36	30	40	0
	M	M	M	0
	1	1	1	0

3.2. BÀI TOÁN PHÂN PHỐI THAM SỐ

3.2.1. Mô hình bài toán

Bài toán phân phối mà hệ số hàm mục tiêu C_{ij} không phải là hằng số, mà là một biến phụ thuộc tuyến tính tham số t có mô hình như sau:

Hàm mục tiêu:

$$
Z=\sum_{i=1}^{m} \sum_{j=1}^{n} C_{i j}(t) \cdot x_{i j}-M i n
$$

Trong đó: $\mathrm{C}_{\mathrm{ij}}(\mathrm{t})=\mathrm{C}^{\prime}{ }_{\mathrm{ij}}+\mathrm{t} . \mathrm{c}^{\prime}{ }_{\mathrm{ij}} ; \alpha \leq \mathrm{t} \leq \beta$
Ràng buộc hàng:
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

$$
\sum_{j=1}^{n} x_{i j} \leq a_{i}(i=1 \ldots m)
$$

Ràng buộc cột:

$$
\sum_{i=1}^{m} P_{i j}, x_{i j} \leq b_{i}(j=1 \ldots n) ;
$$

Điều kiện tất yếu: $\mathrm{x}_{\mathrm{ij}} \geq 0$.

3.2.2. Giài bài toán phân phối tham số

Bài toán trên được giải quyết theo các bước sau đây:
Bước 1 : Đưa bài toán về dạng chính tấc; cho $\mathrm{t}=\alpha$ (cận dưới) và giải bài toán phân phới thông thường.

Phương án tối ưu thu được chỉ đúng với $\mathrm{t}=\alpha$.
Bước 2: Xác lập hệ thống số kiểm tra U_{i} và V_{j} đối với các ô bận, sau đó tính các giá trị D_{ij} (t) đối với các ô tự do ở phần cơ bản.

$$
D_{i j}(t)=P_{i j} V_{j}-U_{i}-C_{i j}(t) .
$$

Bước 3: Giảj hệ bất phương trình sau:

$$
\left.\begin{array}{l}
\mathrm{D}_{\mathrm{ij}}(\mathrm{t}) \leq 0 \tag{3.17}\\
\mathrm{U}_{\mathrm{i}}(\mathrm{t}) \geq 0
\end{array}\right\}
$$

Trong đó $\mathrm{U}_{\mathrm{i}}(\mathrm{t})$ là số kiểm tra ứng với các ô tự do thuộc cột phụ.

Nghiệm của hệ là: $\alpha \leq \mathrm{t} \leq \alpha^{\prime}$.
Nếu $\left[\alpha, \alpha^{\prime}\right]$ bao khoảng $[\alpha, \beta]$ thì chọn ô không thoả mãn (3.17) đưa vào danh sách ô bận, chuyển phương án và
thuât toán cứ tiếp tục như vậy cho đến khi $\left[\alpha, \alpha^{\prime}\right]$ bao toàn bộ $[\alpha, \beta]$.

Vi dụ: Giải bài toán phân phối tham số với các dữ liệu ở bảng 3.12, trong đó t là tham số có giá trị trong khoảng từ 1 đến 1,2 .

Các hệ số hàm mục tiêu phụ thuộc tuyến tính tham số t như sau:

$$
\begin{array}{lll}
\quad \mathrm{c}_{\mathrm{t} .1}=5 \mathrm{t} ; & \mathrm{c}_{1.2}=4 \mathrm{t}-2 ; & \mathrm{c}_{1.3}=3 \mathrm{t} ; \\
\mathrm{c}_{2.1}=4 \mathrm{t}+4 ; & \mathrm{c}_{2.2}=6 \mathrm{t} ; & \mathrm{c}_{2.3}=5-\mathrm{t} ; \\
1 \leq \mathrm{t} \leq 1,2 . & & \\
\text { Với } \mathrm{t}=1 \text { ta có phương án tối ưu ở bảng } 3.12 .
\end{array}
$$

Thay các C_{ij} với $\mathrm{t}=1$ bằng $\mathrm{C}_{\mathrm{ij}}(\mathrm{t})$; tính các số kiểm tra U_{i} (t) và $V_{j}(t)$ đối với các ô bận; Tính các giá trị $D_{i j}$.

O $(2,1): 2\left(\frac{7}{4} t+\frac{1}{2}\right)-0-4 t-4=-\frac{1}{2} t-3$.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 126

Ô $(2,3): 2\left(t+\frac{2}{5}\right)-0-(5-t)=3 t-\frac{21}{5}$.
$\hat{O}(1,4): \mathrm{U}_{1}=2 \mathbf{t}+2$.
Giải hệ bất phương trình:
Ô (2,1): $-1 / 2 t-3 \leq 0$
$\hat{O}(2,3): 3 t-21 / 5 \leq 0$
O (1,4): $2 \mathrm{t}+2 \geq 0$
Nghiệm của hệ là: - $1 \leq \mathbf{t} \leq \frac{21}{15}$.
Như vậy, phương án ở bảng 3.13 là tối ưu khi t thuộc khoảng $\left[-1 ; \frac{21}{15}\right]$, mà khoảng đó đã bao toàn bộ miền giá trị của t. Vậy đó là phương án tối ưu của bài toán.

Churơng IV

 PHƯONG PHÁP QUY HOACH ĐỘNG

 PHƯONG PHÁP QUY HOACH ĐỘNG}

4.1. NHÛNG NỘI DUNG CƠ BẢN

4.1.1. Bài toán dẫn

Quy hoạch động là một bộ phận của quy hoạch toán học. Trong quá trình lập quy hoạch phát triển, lập kế hoạch sản xuất, lựa chọn các phương án thiết kế... thường gặp những vấn đề có bản chất quy hoạch động, chẳng hạn:

- Phân bổ vốn đầu tư theo các giai đoạn sao cho đạt hiệu quả cao nhất hoạ̀c chi phí thấp nhất;
- Lựa chọn các giải pháp công nghệ mà giải pháp sau có thể kế tiếp giải pháp trước để đạt được mục tiêu cực trị;
- Các bài toán có dạng tìm đường đi ngắn nhất giữa điểm A và điểm Z , trong đó các phương án hành trình phải đi qua một số điểm quy định nào đó, v.v ...

Cũng như các bài toán tối ưu nói chung, mô hình bài toán quy hoạch động bao gồm hàm mục tiêu và các điều kiện ràng buộc. Chúng là những hệ thức tuyến tính hoạac phi tuyến.

Phương pháp quy hoạch dộng không có công thức cụ thể. không đưa ra tiêu chuẩn tối ưu dưới dạng "định lượng" 127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 128
để đánh giá từng phương án, mà nó chỉ đưa ra mô hình khái quát và chỉ ra cách giải bài toán theo một chiến lược "định tính". Tuỳ theo vấn đề cụ thể đặt ra, căn cứ mô hình khái quát và chiến lược đó, ta sẽ biểu diễn bài toán theo cách thức quy hoạch động và giải bài toán đó theo chiến lược quy hoạch động.

Để làm quen với phương pháp quy hoạch động, chúng ta sc̃ tiếp cận với một bài toán đã được đơn giản hoá triệt để (thực tế phức tạp hơn nhiều). Bài toán này sẽ cho ta một hình ảnh ban đẩu về quy hoạch dộng:

Người ta dự định xây dựng một tuyến đường bộ mà điểm dầu là A , điểm cuối là F . Tuyến đường này bắt buộc phải đi qua các địa phương $\mathrm{B}, \mathrm{C}, \mathrm{D}$ và E .

Khối lượng đào đắp của mỗi đoạn đường từ một điểm này đến một điểm xác định tiếp theo dược thể hiện trên hình 4.1.

Hãy xác định hướng đi của con đường từ A đến F sao cho tổng khối lượng dào đắp là nhỏ nhất.

Tại mơi địa phương nói trên tồn tại một số điển cụ thé mà phương án tuyến đường có thể đi qua:

Tại địa phương B là $\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}$;
Tại dịa phương C là $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$;
Tại địa phương D là $\mathrm{D}_{1}, \mathrm{D}_{2}$:
Tại địa phương E là $\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}$.
Có 2 cách giải bài toán này:

Cách thứ nhất: Xác định hướng đi cụ thể của một phương án rồi cộng các giá trị khối lượng đào đắp từng đoạn thuộc phương án đó, ta có tổng khối lượng đào đắp của 1 phương án. Cứ làm như vậy cho tất cả các phương án có thể, sau đó so sánh khối lượng đào đắp của tất cả các phương án đó để tìm ra phương án có giá trị nhỏ nhất. Đây là cách làm tưởng như đơn giản song không khả thi vì số lượng phương án quá nhiều.

Với bài toán nêu trên, số lượng phương án đường đi từ A đến F là 3.9.6.6.3. $=2916$.

Cách thứ hai: Tìm một chiến thuật giải bài toán trên cơ sở dựa vào một số ít phương án mà trong dó có chứa phươong án tối ưu. Đó chính là chiến lược quy hoạch dộng mà chúng ta sẽ nghiên cứu trong phần này.
A
B
C
D
E F

Hinh 4.1: Các phutong án xây dựng tuyến đường $A-F$.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 130

4.1.2. Giai doạn, trạng thái

Bài toán quy hoạch động được chia thành nhiều giai doạn. Giai đoạn có thể là không gian, có thể là thời gian. Bài toán tìm đường đi từ A đến F nêu ở mục 4.1 .1 có 5 giai đoạn mà điểm đẩu của chúng là $\mathrm{A} ; \mathrm{B} ; \mathrm{C} ; \mathrm{D} ; \mathrm{E}$. Các bài toán lập kế hoạch dài hạn thường có giai đoạn là thời gian, chẳng hạn từ nām này đến năm tiếp theo, từ năm tiếp thco đến nåm tiếp theo nữa, v.v...

Độ lớn của các giai đoạn (trong cùng một bài toán) không nhất thiết phải bằng nhau, song phải liên tục, phải nối tiếp nhau - dù đó là thời gian hay không gian.

Tại mỗi giai đoạn tồn tại một số trang thái. Tại A có một trạng thái, đó là điểm A . Tại địa phương B có 3 phương án địa điểm, đó là 3 trạng thái B_{1}, B_{2} và $B_{3}, v . v \ldots .$. Như vậy các trạng thái ở bài toán nêu trên chính là các phương án địa điểm của một địa phương mà con đường có thể đi qua. Những trái thái đó không nhận một giá trị nào cả.

Tuy nhiên, đa số các trường hợp, trạng thái nhận một giá trị là số thực.

Vídu:
Số liệu dự báo cho thấy khối lượng bốc xếp than đá ở một nhà ga hàng hoá tại năm t sẽ từ $\mathrm{A}_{\mathrm{t}}^{\text {Max }}$ đến $\mathrm{A}_{\mathrm{t}}^{\text {Mnn }}$, trong khi nảng suất máy bốc xếp là S . Số máy cần thiết ở nảm 1 nà̀m trong khoảng:

$$
\frac{A_{1}^{\operatorname{Max}}}{S}=6,5 ; \quad \frac{A_{1}^{M i n}}{S}=3 ;
$$

Như vậy, ở giai đoạn t tồn tại các trạng thái $(6,5) ;(6)$; (5); (4); (3).

4.1.3. Véc tơ chuyển trạng thái

Ta gọi đoạn thẩng nối từ trạng thái i thuộc giai đoạn t dến trạng thái j thuộc giai đoạn $\mathrm{t}+1$ là véc tơ chuyển trạng thái. Trên hình 4.1 đoạn thẳng nối từ trạng thái B_{2} đến trang thái C_{3} là một véc tơ chuyển trạng thái.

Véc tơ chuyển trạng thái bao giờ cũng có giá trị, đó là hằng số hoạac hàm. Các véc tơ chuyển trạng thái của bài toán ở mục 4.1.1 đều là hằng số. Trong thực tế, da số các trường hợp giá trị của các véc tơ chuyển trạng thái dược xác định qua một hàm phụ thuộc vài tham biến.

Mổi véc tơ đều có một điểm gốc và một điểm ngọn. Điểm gốc là trạng thái gốc thuộc giai đoạn t , điểm ngọn là trạng thái ngọn thuộc giai đoạn $\mathfrak{t}+1$.

Ý nghia của véc tơ chuyển trạng thái là: khi chuyển từ một trạng thái xác định thuộc giai doạn t sang một trạng thái xác định khác thuộc giai đoạn $\mathrm{t}+1$ thì tiêu tốn một lượng chi phí xác định. Cách lập véc tơ chuyển trạng thái nà̀m ngoài nội dung của phương pháp quy hoạch động, song nó lại có vai trò quyết dịnh.

Vídu:
Một công ty Hàng không khai thác thường xuyên một
tuyến bay cố dịnh. Chi phí sửa chữa định kì hàng nām cho 1 máy bay loại i là a_{il}, trong đó t là nảm thứ $0,1, \ldots, \mathrm{n}$ kể từ nām bắt đầu đưa ra khai thác; i là loại máy bay ở năm t.

Như vậy a_{i} là chi phí sửa chữa I máy bay loại i được trang bị ở giai đoạn t .

Công ty hiện có 3 máy bay cùng loại (tạm gọi là loại I), do đó đến cuối nảm nay ($\mathrm{t}=0$) phải chi phí cho sửa chữa 1à $3 \mathrm{a}_{0,1}$.

Nām nay công ty đảm nhận vận chuyển khối lượng hành khách là A_{0}, kế hoạch những năm tiếp theo sẽ là A_{1}, $\mathrm{A}_{2}, \mathrm{~A}_{3}, \ldots$ Do khối lượng vận chuyển tãng nên nām tới phải mua thêm máy bay.

Có 2 loại máy bay cần xem xét để chọn mua cho giai đoạn $t=1$, các chỉ tiêu của chúng như sau:
Loại máy
I
II
Sức chở Chi phí SC
Đơn giá

I	$\mathrm{C}_{1.1}$	$\mathrm{a}_{1,1}$	$\mathrm{G}_{\mathrm{t} .1}$
II	$\mathrm{C}_{\mathrm{t} .2}$	$\mathrm{a}_{1.2}$	$\mathrm{G}_{1.2}$

Số lượng máy bay cần mua thêm và tiền mua là:
Loại I: $N_{1,1}=\left(A_{1, t}-A_{t, 1,}\right) / C_{1,1} T_{t, 1}=G_{1,1,} \cdot N_{1, t}$
Loại II: $\mathrm{N}_{1.2}=\left(\mathrm{A}_{1.1}-\mathrm{A}_{\mathrm{t}, 1,1}\right) / \mathrm{C}_{1,2} \mathrm{~T}_{1.2}=\mathrm{G}_{1.2 .2} \mathrm{~N}_{1.2}$
Chi phí sửa chữa máy bay hiện có và chi phí mua mới máy bay phải trang trải trong nām nay là:

$$
F_{0,1,1,1}=3 a_{0,1}+T_{1.1}
$$

$$
\mathrm{F}_{0,1,2}=3 \mathrm{a}_{0,2}+\mathrm{T}_{1,2}
$$

Đây chính là hai véc tơ chuyển trạng thái.
Tại giai đoạn $\mathrm{t}=0$ chỉ có 1 trạng thái, đó là 3 máy bay cùng loại. Tại giai doạn $t=1$ thì có 2 trạng thái: $\mathrm{N}_{1.1}$ máy bay loại I và $\mathrm{N}_{1.22}$ máy bay loại II. Chuyển từ trạng thái 1 của giai doạn $t=0$ sang trạng thái 1 của giai doạn $t=1$ là véc tơ $\mathrm{F}_{0,1,1}$; Chuyển từ trạng thái 1 của giai đoạn $\mathrm{t}=0$ sang trạng thái 2 của giai doạn $t=1$ là véc tơ $\mathrm{F}_{0,1,2}$.

4.1.4. Véc tơ truy toán (hàm điều khiển)

Véc tơ truy toán còn gọi là hàm điều khiển, đó là véc tơ chuyển trạng thái nhận giá trị của bản thân véc tơ đó cộng với giá trị của véc tơ nối tiếp với nó. (2 véc tơ được coi là nối tiếp nếu ngọn của véc tơ này là gốc của véc tơ tiếp theo).

Giá trị của véc tơ truy toán phụ thuộc hướng của hành trình. Gọi $\varphi_{1 ., i, j}$ là véc tơ truy toán có gốc ở trạng thái i thuộc giai đoạn t , có ngọn tại trạng thái j thuộc giai đoạn $\mathrm{t}+1$, khi đó:

Với hướng đi xuôi chiều (từ $\mathrm{t}=0$ dến $\mathrm{t}=\mathrm{n}$) thì $\varphi_{\mathrm{i}, \mathrm{i}, \mathrm{j}}=$ $F_{\mathrm{L} . \mathrm{i}}+\varphi_{\mathrm{it-1.k,i}}$, trong dó k là trạng thái gốc của véc tơ bên trái.

Với hướng đi ngược chiĉ̀u (từ $\mathrm{t}=\mathrm{n}$ đến $\mathrm{t}=0$) thì $\varphi_{1 . i \mathrm{i}}=$ $F_{t, j, j}+\varphi_{t+1, k, i}$ trong đó k là trạng thái gốc của véc lợ bên phải.

Hinh 4.2-a có 3 véc tơ chuyển giai doan.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

Hình 4.2-b và 4.2 -c là các véc tơ truy toán tương ứng theo hành trình xuôi chiều và ngược chiều.

b/ ------------------------------------->> (hành trình xuôi chiĉ̀u)

Hinh 4.2: Các véc tơ chuyển trạng thái và véc tơ truy toán.
Ta chỉ có thể xác định được véc tơ truy toán khi:

- Đối với hành trình xuôi chiều thì bên trái nó chỉ có 1 véc tơ truy toán;
- Đối với hành trình ngược chiĉ̀u thì bên phải nó chỉ có 1 véc tơ truy toán.

Việc xác định hàm điều khiển (véc tơ truy toán) đóng vai trò quyết định trong việc lập bài toán quy hoạch. Hàm điều khiển có dạng như sau:

$$
\begin{equation*}
\varphi_{1,, \mathrm{j}}=\mathrm{F}_{\mathrm{L}, \mathrm{i}, \mathrm{j}}+\varphi_{1+1 \mathrm{i}, \mathrm{k}} \tag{4.1}
\end{equation*}
$$

Trong đó:

- $\mathrm{F}_{\mathrm{L}, \mathrm{i}, \mathrm{l}}$ là giá trị véc tơ chuyển từ trạng thái i ở ngoài giai doạn t sang trạng thái j ở giai đoạn $t+1$;
- $\varphi_{\mathrm{L}, \mathrm{ij}, \mathrm{k}}$ là giá trị véc tơ trung toán có gốc là trạng thái j ở giai đoạn $\mathrm{t}+1$ và ngọn là trạng thái k ở giai đoạn $\mathrm{t}+2$.

4.1.5. Hàm mục tiêu, các ràng buộc

Sau khi đã làm quen với khái niẹ̀m véc tơ truy toán, ta có thể mô tả hàm muc tiêu của bài toán quy hoạch dộng nhu sau:

$$
\begin{equation*}
\mathrm{Z}=\varphi_{1 . \mathrm{i}, \mathrm{j}}-\operatorname{Min}(\text { hoạac } \mathrm{Max}) \tag{4.2}
\end{equation*}
$$

Trong đó $\varphi_{1 . i j}$ ià hàm điều khiển (véc tơ truy toán) ở phép tính cuối cùng theo hành trình xuôi chiều hoặc ngược chiều.

Điệu kiẹnn ràng buộc có nhiều dạng, tùy thuộc vấn đề mà thực tiễn đề ra. Tuy vậy, sự ràng buộc chủ yếu là dành cho giá trị véc tơ chuyển trạng thái, nó không được lớn hơn hoặc nhỏ hơn một giá trị nào đó.

Chẳng hạn ở giai doạn t cần $\mathrm{M}_{1 \mathrm{ri}}$ máy (i là số thứ tự phương án só lượng máy): số máy từ giai đoạn trước chuyển sang là $\mathrm{M}_{\mathrm{t}-1, k}$; giá mua mới một máy là e đổng. Lúc này véc tơ chuyển trạng thái là:

$$
F_{\mathrm{t}-1, \mathrm{k}, \mathrm{i}}=\left(\mathrm{M}_{\mathrm{t}, \mathrm{i}}-\mathrm{M}_{\mathrm{l}, \mathrm{l}, \mathrm{k}}\right) \cdot \mathrm{e}
$$

Điều kiện ràng buộc có thể là: kinh phí mua máy mới không vượt quá E dồng, lúc đó:

$$
\mathrm{F}_{1-1), k_{1},} \leq \mathrm{E}
$$

4.1.6. Chiến lược giải bài toán quy hoạch dộng

Chiĉ́n lược giải bài toán quy hoạch dộng dựa trên nguyên lý ıối ưu Bellman:
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 136
"Mặc dù trạng thái đấu tiên và quyết dịnh đầu tiên nhur thế nào, các quyết định tiếp theo cũng phải lạp thành quyết dịnh tối ıtu đối với trụng thái hình thành bởi trạng thái đầu tiên và quyét định đầu tiên".

Với nguyên lý này thì rõ ràng ta không cần phải xét toàn bộ các phương án, mà chỉ cần so sánh các phương án có "phần đuôi" là tối ưu. Không những thế, bài toán có thể giải bằng chiến lược xuôi chiều hoặc ngược chiều.

Đối với chiến lược xuôi chiều:
Bắt đầu từ giai đoạn $\mathrm{t}=0$. Giai đoạn này có M_{0} trạng thái. Giá trị các véc tơ truy toán của giai đoạn này cūng chính là các giá trị véc tơ chuyển trạng thái (bởi giai đoạn trước đó không xét đến).

Hinh 4.3: Phtong án tố lat theo chiến lượ xuôi chiều.

Trên $\mathbf{t}=1$ có M_{1} trạng thái. Tại mổi trạng thái này chỉ được phép tồn tại 1 véc tơ có gốc trên $t=0$. Nói một cách khác, mỗi trạng thái của giai đoạn sau là ngọn của 1 véc tơ truy toán duy nhất xuất phát từ giai đoạn trước (được chọn trong số các véc tơ truy toán cùng gốc có giá trị nhỏ nhất hoạac lớn nhất tùy theo bài toán Z min hoạac max). Như vậy ở giai đoạn cuối cùng $\mathrm{t}=\mathrm{n}$ chỉ có l véc tơ truy toán, đó cũng là giá trị hàm mục tiêu. Từ dây cũng chỉ có một hành trình duy nhát nối đến giai đoạn $\mathrm{t}=0$.

Hình 4.3 là kết quả giải bài toán ở mục 4.1.l theo chiến lược xuôi chiều.

Đối với chiến lược ngược chiều:
Bắt đầu từ giai đoạn $\mathrm{t}=\mathrm{n}$. Giai đoạn này có M_{n} trạng thái. Giá trị các véc tơ truy toán của giai đoạn này cũng chính là các giá trị véc tơ chuyển trạng thái (bởi giai đoạn sau đó không xét đến).

Trên $\mathrm{t}=\mathrm{n}-1$ có $\mathrm{M}_{\mathrm{n} \cdot 1}$ trạng thái. Tại mồi trạng thái này chỉ dược phép tồn tại 1 véc tơ có ngọn trên $\mathrm{t}=\mathrm{n}+1$ (đây là giai đoạn không xét đến). Nói mộl cách khác, mỗi trạng thái của giai đơạn có số thứ tự nhỏ hơn là gốc của 1 véc tơ truy toán duy nhát có ngọn ở giai đoạn có số thứ tự lớn hơn (dược chọn trong số các véc tơ truy toán cùng ngọn có giá trị nhỏ nhất hoạac lớn nhất tùy theo bài toán $\% \mathrm{~min}$ hoặc max). Như vậy ở giai đoạn $t=0$ chỉ có 1 véc tơ truy toán, đó cũng là giá trị hàm mục tiĉu. Từ đây cũng chỉ có một hành trình duy nhất nối dén giai đoạn $\mathrm{t}=\mathrm{n}$.

Hînh 4.4 là kết quả giải bài toán ở mục 4.1.1 theo chiến lược ngược chiều.

Hinh 4.4: Phuơng án tốt tau theo chiến hợc ngược chiêu.
Tóm lại, lược dồ giải bài toán quy hoạch động như sau (ở đây ta chỉ đề cập đến bài toán Z min với phương pháp giải ngược):
a. Xác định các giai đoạn tính toán. Giai đoạn có thể là thời gian, không gian...
b. Xác định các trạng thái của từng giai đoạn. Các trạng thái có thể có giá trị hoạ̀c không có giá trị.
c. Xây dựng các véc tơ chuyển trạng thái (hà̀ng số hoạac hàm số).
d. Nếu có ràng buộc $\mathrm{F}_{\text {ti.j }} \leq \mathrm{E}$, khi véc tơ chuyển trạng thái không thoả mãn thì cho $\mathrm{F}_{1 ., \mathrm{j}}=\mathrm{MM}$, trong dó MM là số lượng lớn tuỳ ý.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

Nếu ràng buộc có dạng $\mathrm{F}_{\mathrm{ij}} \geq \mathrm{E}$ mà véc tơ chuyển trạng thái không thoả mãn cho $\mathrm{F}_{\mathrm{ijj}}=\mathrm{MM}$ là số âm nhỏ tuỳ ý.

Bằng cách đó, ta sẽ loại được ngay từ đầu các véc tơ chuyển trạng thái không thoả mãn ràng buộc ra khỏi danh sách các phương án tối ưu cục bộ.
e. Lập hàm điều khiển (véc tơ truy toán) của giai đoạn $\mathrm{t}=\mathrm{n}$, từ đó xác định phương án tối ưu cục bộ của giai đoạn cuối cùng. Tiếp theo lập hàm diều khiển của giai đoạn $\mathrm{t}=\mathrm{n}-\mathrm{l}$ và tiếp tục như vậy cho đến giai doạn $\mathrm{t}=0$.
f. Tại giai đoạn $t=0$ chỉ chọn trong số các hàm điều khiển của giai một hàm có giá trị nhỏ nhất, đó chính là giá trị hàm mục tiêu của phương án tối ưu. Từ véc tơ truy toán này đi ngược trở lại con đường vừa qua, ta sẽ có nội dung (hành trình) của phương án tối ưu.

4.2. MÔT SỐ BÀI TOÁN ÚNG DỤNG

4.2.1. Bài toán đầu tư thiết bị sản xuất

Cợ quan chủ dầu tư tiĉ́n hành lập dự án lắp đặt dây chuyền sản xuất loại sản phẩm X với sản lượng hàng nām là 450 ngàn chiếc.

Nguyên liệu từ kho phải lần lượn đi qua 4 phân xưởng (mổi phân xướng thực hiện một công đợn). cuối cùng là chuyển vào kho thành phẩm.

Mổi phân xương phải được trang bị một loại máy chuyên dụng phù hợp với công nghệ của phân xưởng đó.

Trên thị trường có các loại máy với nāng suất và giá bán xác định.

Cān cứ vào giá của máy và quy định về khấu hao, người ta tính được giá trị khấu hao cơ bản của môi máy. Bảng 4.1 trình bày cong suất của mổi loại máy ứng với từng phân xưởng và giá trị khấu hao cơ bản hàng nãm của mổi máy.

Bảng 4.1.

Thử tứ loại măy	Năng suất máy - khấu hao co bản / máy			
	PX1	PX2	PX3	PX4
I	$45-0,7$	$60-0,85$	$25-0,4$	$50-0,65$
II	$40-0,55$	$50-0,65$	$20-0,3$	$40-0,55$
III	$30-0,4$	$35-0,45$		$30-0,4$

Chi phí sản xuất hàng năm của dây chuyền này bao gồm chi phí khấu hao cơ bản và chi phí sản xuất đơn thuần (lương, bảo hiểm, nguyên vật liệu, nhiên liệu, sửa chữa, thuế...)

Nguyên liệu hoặc bán thành phẩm sau khi đi qua một phân xưởng được hờn thiện ở những mức độ khác nhau tuỳ theo phân xưởng đó được trang bị loại máy nào. Điều này se ảnh hưởng đến mức chi phí của phân xưởng tiếp theo khi tiếp nhận và gia công bán thành phấm đó.

Nói một cách khác, bán thành phẩm được thực hiện ở phân xưởng t bẳng máy i , khi chuyển sang phân xưởng $\mathrm{t}+\mathrm{l}$ để thực hiện bẳng máy j sẽ phải tiêu tốn một chi phí sản
xuất đơn thuần xác định. Các giá trị cụ thể được ghi trên hình 4.5 .

Hinh 4.5: Chi phi sản xuất đơn thuẩn
Vấn đề đạt ra là: Hãy xác định chủng loại, số lượng máy chuyên dụng trang bị cho các phân xưởng (mổi phân xưởng chỉ có 1 loại máy) sao cho tổng chi phí sản xuất (chi phí $\mathrm{KHCB}+$ chi phí SX đơn thuẩn) là nhỏ nhất.

Điều kiện ràng buộc ở đây là nāng suất hàng nām của mổi phân xưởng không nhỏ hơn tổng sản lượng theo ké hoạch của toàn bọ̣ dây chuyền.

Trước hết ta coi mỗi phân xưởng là 1 giai đoạn, kho nguyên liệu là 1 giai đoạn, kho thành phẩm là 1 giai đoạn. Bài toán có 6 giai doạn $(t=0.5)$:

Kho nguyên liệu: giai đoạn $t=0$;
Các phân xưởng: các giai đoạn $\mathrm{t}=1, \mathrm{t}=2, \mathrm{t}=3, \mathrm{t}=4$.

Kho thành phẩm: giai đoạn $\mathrm{t}=5$.
Tại mổi phân xưởng, coi mỗi loại máy là một trạng thái, khi đó số lượng trạng thái ở các phân xưởng lần lượt là 3 , 3,2 và 3 .

Gọi nāng suất của mổi máy (trên bảng 4.1) là $\mathrm{S}_{\mathrm{l}, \mathrm{i}}$ nghĩa là loại máy i ở phân xưởng t có nāng suất $\mathrm{S}_{\mathrm{i}, \mathrm{c}}$, khi đó số lượng máy loại i cần trang bị cho phân xưởng t là:

$$
\mathrm{M}_{\mathrm{l}, \mathrm{i}}=\frac{450}{S_{, i,}}
$$

Cách tính trên cho kết quả thoả mãn điều kiện ràng buộc, nghĩa là số máy tối thiểu các loại được trang bị sc̃ làm ra số sản phẩm không nhỏ hơn mức kế hoạch đã đề ra (xem bảng 4.2).

Bảng 4.2.

Thử tự loại mày	Só lựng mảy $\mathbf{~ k h a ̂ ́ u ~ h a o ~ c o ̛ ~ b a ̉ n ~}$			
	$\mathbf{P X 1}$	$\mathbf{P X 2}$	$\mathbf{P X 3}$	$\mathbf{P} \times \mathbf{4}$
I	$10-7,0$	$8-6,8$	$18-7,2$	$9-5,85$
II	$12-6,6$	$9-5,85$	$23-6,9$	$12-6,6$
III	$15-6,0$	$13-5,85$		$15-6,0$

Tại kho nguyên liệu và kho thành phẩm không có máy nào cả, mỗi giai đoạn này cunng có 1 trạng thái với giá trị bàng 0 .

$$
Q_{i: 1}=0 ; \quad Q_{5,1}=0 .
$$

Gọi $\mathrm{D}_{\mathrm{t}, \mathrm{j}, \mathrm{l}}$ là chi phí sản xuất dơn thuần;

Gọi $K_{1, i}$ là chi phí khấu hao cơ bản của mỗi máy, chi phí khấu hao cơ bản cho các máy ở phân xưởng t là $\mathrm{G}_{\mathrm{u}}=\mathrm{K}_{\mathrm{t}, \mathrm{i}} \mathrm{Q}_{\mathrm{L}, \mathrm{i}}$.

Giá trị của mồi véc tơ chuyển trạng thái chính là tổng của chi phí khấu hao cơ bản và chi phí sản xuất đơn thuần:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{t}, \mathrm{i}, \mathrm{j}}=\mathrm{G}_{\mathrm{L}, \mathrm{i}}+\mathrm{D}_{\mathrm{i}, \mathrm{i}, \mathrm{j}} \tag{4.10}
\end{equation*}
$$

Trong đó: $t=0 . .5 ; \mathrm{i}=1 . . \mathrm{M}_{1} ; \mathrm{j}=1 . . \mathrm{M}_{\mathrm{t}+1}$
Bài toán có 27 véc tơ chuyển trạng thái. Ta dễ dàng tính được giá trị của 27 véc tơ dó (xem hình 4.6).

Hinh 4.6: Chi phí sän xuât dơn thuần + Khấu hao $C B$.
Bây giờ giải bài toán théo chiến lược ngược chiĉ̀u. Ký hiệu giá trị của véc tơ truy toán (hàm điều khiển) là $\varphi_{\text {L. . . }, ~}$, khi dó:

$$
\varphi_{1, i, j}=F_{L, i, j}+\varphi_{\imath, j, k}
$$

- $F_{1 . . j \mathrm{j}}$ là véc tơ chuyển trạng thái từ gốc i trên $1-1$ sang ngon j trên t ;
$\varphi_{1 . j \mathrm{~h}}$ là véc tơ truy toán có gốc j trên t và ngọn k trên $\mathrm{t}+1$.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 144

1/ Tại giai đoạn $\mathrm{t}=4$ có 3 trạng thái, mổi trạng thái chỉ có 1 véc tơ chuyển trạng thái, giá trị các véc tơ chuyển trạng thái cũng như véc tơ truy toán đều bằng 0 (chuyển thành phẩm vào kho thì không mất gì).

$$
\varphi_{4, \mathrm{i}, 1}=0(\mathrm{i}=1 \ldots 3) .
$$

2. Tại giai đoạn $t=3$ có 2 trạng thái, mổi trạng thái là gốc của 3 véc tơ chuyển trạng thái. Giá trị véc tơ truy toán nhỏ nhất ứng với từng trạng thái gốc là:

Với i $=1 \quad \varphi_{3,1,1}=14,9$
Với $i=2 \quad \varphi_{3.2 .1}=17,9$
Giữ lại 2 véc tơ này.
3/ Tại giai đoạn $t=2$ có 3 trạng thái, mồi trạng thái là gốc của 2 véc tơ chuyển trạng thái. Giá trị véc tơ truy toán nhỏ nhất ứng với từng trạng thái gốc là:

$$
\begin{array}{ll}
\text { Với } i=1 & \varphi_{2.1 .1}=34,1 \\
\text { Với } i=2 & \varphi_{2.2 .1}=36,1 \\
\text { Với } i=3 & \varphi_{2,3,1}=40,9
\end{array}
$$

Giữ lại 3 véc tơ này.
4/ Tại giai đoạn $t=1$ có 3 trạng thái. Ứng với mổi trạng thái gốc có 1 véc tơ truy toán nhỏ nhầt như sau:

$$
\begin{array}{ll}
\text { Với } i=1 & \varphi_{1 . t .1}=44,9 \\
\text { Với } i=2 & \varphi_{1.2 \mid}=45,9 \\
\text { Với } i=3 & \varphi_{1,3,1}=46,9
\end{array}
$$

Giữ lại 3 véc tơ này.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

5/ Tại giai đoạn $\mathrm{t}=0$ chỉ có 1 trạng thái $(\mathrm{i}=1)$ gồm 3 véc tơ truy toán, véc tơ nhỏ nhất chính là giá trị hàm mục tièu nhỏ nhất.

$$
\varphi_{0,1,1}=59,9 .
$$

Để đi từ giai doạn đầu (kho nguyên liệu) đến giai đoạn cuối (kho thành phẩm), phương án chỉ có 1 con đường duy nhất đự̛̣c biểu diễn trên hình vẽ 4.7.

Minh 4.7: Lượ dồ phutơng án tối tau.
Phương án tối ưu có nội dung ở bảng 4.3.
Bảng 4.3.

Phân xưởng	Loại máy	Số lượng
I	I	10
II	I	8
III	I	18
IV	1	9

Tổng chi phí sản xuất $=59,9$.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 146

4.2.2. Bài toán xác định thời gian quay vòng toa xe hợp lý

Thời gian quay vòng toa xe được tính từ thời điểm xếp hàng lên toa xe đến thời điĉ̉m xếp hàng lên toa xe tiếp theo.

Rút ngắn thời gian quay vòng toa xe làm tãng số lần toa xe được xếp hàng, nghĩa là tảng khối lượng vận chuyển. Để đáp ứng được khối lượng vận chuyển nãm thứ t là A_{L} cần một số lượng toa xe là N_{t}.

$$
N_{t}=\frac{A_{1}}{365 \cdot p} \cdot Q_{1, j}
$$

Trong đó:

- p là trọng tải bình quân của 1 toa xe;
- $\mathrm{Q}_{\mathrm{t}, \mathrm{j}}$ là phương án thời gian QVTX thứ j thuộc năm t .

Số toa xe nām trước chuyển sang là: $\mathrm{N}_{\mathrm{t}-\mathrm{t}}$

$$
\begin{equation*}
N_{t-1}=\frac{A_{t-1}}{365 \cdot p} \cdot Q_{1-1, i} \tag{4.4}
\end{equation*}
$$

Khi đó, số xe cần mua mới để đáp ứng nhu cầu vận chuyển ở năm tà:

$$
\frac{1}{365 \cdot p}\left(A_{t} Q_{1, j}-A_{t-1} \cdot Q_{1-1, i}\right)
$$

Giá mua mới 1 toa xe là D , chi phí mua mới toa xe ở năm t sẽ là:

$$
\begin{equation*}
\mathrm{G}_{1 . \mathrm{i}, \mathrm{j}}=\frac{\mathrm{D}}{365 \cdot \mathrm{p}}\left(\mathrm{~A}_{1} \mathrm{Q}_{1 . \mathrm{i}}-\mathrm{A}_{\mathrm{i} \cdot 1.1} \cdot \mathrm{Q}_{1-1 . \mathrm{i}}\right) \tag{4-5}
\end{equation*}
$$

nghĩa là ở nảm $\mathrm{t}-1$ thực hiện khối lượng vận chuyển là $\mathrm{A}_{\mathrm{t}, \mathrm{l}}$ với thời gian QVTX là $Q_{1: i l}$, ; sang năm t thực hiện khối lượng vận chuyển A_{1} với thời gian QVTX là $\mathrm{Q}_{1 .}$; chi phí mua mới toa xe là $\mathrm{G}_{\mathrm{L}, \mathrm{i}, \mathrm{j}}$
$\mathrm{G}_{\mathrm{ti}, \mathrm{i},}$ có thể nhận giá trị âm khi:

$$
A_{1}<A_{1-1} \text { hoạa } \mathrm{Q}_{1, j ;}<\mathrm{Q}_{1,1, i}
$$

Điều này có nghĩa là số toa xe năm trước chuyển sang còn thừa thãi để đáp ứng nhu cầu vận chuyển của năm t . Chính vì vậy, diều kiện ràng buộc đầu tiên là $G_{\text {ui, }}$ không âm.

Ngoài ra, tại nām t , chi phí mua sắm toa xe không được vượt quá E_{t} đồng:

$$
\mathrm{G}_{\mathrm{t}, \mathrm{i}, \mathrm{j}} \leq \mathrm{E}_{1}
$$

Nếu vi phạm ràng buộc này thì cho $\mathrm{G}_{\mathrm{i}, \mathrm{i},}=\mathrm{MM}$ (là số dương lớn tuỳ ý).

Tóm lại điều kiện ràng buộc của bài toán là:

$$
\begin{equation*}
0 \leq \mathrm{G}_{\mathrm{t}, \mathrm{i}, \mathrm{j}} \leq \mathrm{E}_{\mathrm{t}} \tag{4.6}
\end{equation*}
$$

Nếu vi phạm cận dưới thì cho $\mathrm{G}_{\mathrm{i}, \mathrm{ij}}=0$;
Nếu vi phạm cận trên thì cho $\mathrm{G}_{\mathrm{ti}, \mathrm{j}}=\mathrm{MM}$.
Ngoài chi phí mua sắm toa xe, muốn giảm thợi gian QVTX thì cần phải đầu tư nâng cấp kết cấu hạ tầng để giảm thời gian tàu chạy trên đường, giảm thời glan tác nghiệp ở các ga. Chi phí nâng cấp kết cấu hạ tầng được xác đinh nhu sau:
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

$$
\begin{equation*}
\mathrm{R}_{\mathrm{ij}}=\mathrm{W}^{(1+v)}-\mathrm{W} \tag{4.7}
\end{equation*}
$$

Trong đó: W là hằng số cơ bản;
v là hiệu số thời gian QVTV nām trước và nām sau:

$$
v=Q_{i \cdot 1, j}-Q_{b, i}
$$

Nếu $\mathrm{v}<0$ thì cho $\mathrm{v}=0$ để đảm bảo rằng nếu thời gian QVTX không giảm thì không cần phải đầu tư nâng cấp kết cấu hạ tầng.

Lúc này tổng chi phí mua sắm tơa xe và nâng cấp kết cấu hạ tầng để đáp ứng nhu cầu vận chuyển năm t là:

$$
\begin{equation*}
F_{1, i, j, j}=\left(G_{1 ., i, j}+R_{i, j}\right) \tag{4.8}
\end{equation*}
$$

Vấn đề đặt ra là: Trong 5 năm tới, từng nām phải thực hiện thời gian quay vòng toa xe là bao nhiêu để sao cho tổng kinh phí mua sắm too xe và nâng cấp kết cấu hạ tầng là nhỏ nhất mà vẫn thoả mãn nhu cầu vận chuyển của từng nảm đó.

Dữ liệu của bài toán được thể hiện ở bảng 4.4.
Bảng 4.4.

Năm (t)	0	1	2	3	4	5
Khối lự̛̣ng V/C $\left(\mathrm{A}_{\mathrm{t}}\right) .10^{3}$	4050	4580	5260	6320	7550	9000
Thời gian QVTX $\left(Q_{t i}\right)$	6,2	6.2	6,2	6,2	6,2	6,2
		6	6	6	6	6
		5,8	5,8	5.8	5,8	5.8
		5,6	5,6	5,6	5,6	5,6
		5,4	5.4	5.4	5,4	5,4
		5,2	5.2	5,2	5,2	5,2

127.0.0.1 downloaded 60905.pdf at Fri Mar 23 100:06:33 ICT 2012

Trọng tải bình quân toa xe $\mathrm{P}=25,5$;
Giá mua 1 toa xe $D=2,9$;
Hằng số cơ bản $\mathrm{W}=150$.
Như vậy, ở giai đoạn xuất phát ($\mathrm{t}=0$) chỉ có 1 trạng thái, còn các giai đoạn khác, mổi giai đoạn đều có 6 phương án trạng thái.

Ở cuối giai đoạn 5 ta không xét đĉ́n việc đầu tư tiếp, do đó các véc tơ truy toán của giai đoạn này đều bằng 0 .
$\varphi_{\text {si.j }}=0(\mathrm{j}$ nằm trên giai đoạn $\mathrm{t}=6$).
Các véc tơ truy toán trên giai đoạn $t=4$ có giá trị:

$$
\varphi_{4 ., \mathrm{j},}=\mathrm{F}_{4 . \mathrm{i}, \mathrm{j}}+0 .
$$

(i chạy trên $t=4 ; j$ chạy trên t)
Với mổi trạng thái gốc nằm trên giai đoạn $t=4$ có 6 véc tơ truy toán mà ngọn của nó nằm trên giai đoạn $t=5$, trong đó tồn tại một véc tơ có giá trị nhỏ nhất. Cụ thể ở giai đoạn $t=4$ ta có phương án tối ưu cục bộ như sau:

Bảng 4.5.

$\begin{gathered} i \\ \text { (trền } t=4 \text {) } \\ \hline \end{gathered}$	$\underset{(\operatorname{trên} t=5)}{j}$	Toa Xe mua má	Tiền mua toa x e	Chi phí nâng cấp nâng cấp	Véc to truy toán
1	2	772	2238,8	258,61	2497,41
2	3	741	2148,9	258,61	2407,51
3	4	710	2059,0	258,61	2317,61
4	5	679	1969,1	258,61	2227,71
5	6	647	1876,3	258,61	2134.91
6	6	810	2349,0	0	2349,0

127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

Như vậy, từ giai đoạn $\mathrm{t}=4$ chuyển sang giai doạn $\mathrm{t}=5$ có 36 véc tơ truy toán, trong đó có 6 véc tơ nhỏ nhất ưng với 6 trạng thái gốc. Đó là phương án tối ưu cục bộ của giai doạn này.

Tương tư, tính tiếp cho các giai đoạn $t=3,1=2, t=1$ và $t=0$. Ở giai đoạn $t=0$, vì chỉ có một trạng thái gốc nên cũng chỉ có 1 véc tơ truy toán nhỏ nhất.

$$
\begin{aligned}
& i=1 \\
& j=2
\end{aligned}
$$

Só toa xe mua mới : 254
Tiĉ̀n mua tơa xe : 736,6
Tiền nâng cấp : 258.61
Véc to truy toán : 8041,35.
Véc tơ truy toán ở giai đoạn này cũng chính là tổng chi phí đâu tư nhỏ nhất của cả 5 giai đoạn. Đây cũng chính là phương án tối ưu.

Đối chiếu ngược trở lại con đường vừa đi qua, ta sẽ có hành trình của phương án tối ưu ở hình 4.5.

Trên hình 4.7, từ $\mathrm{t}=0$ đến $\mathrm{t}=5$ chỉ có một con dường liên tục duy nhất, nghĩa là:

Ở näm $t=0$, thời gian QVTX là 6,2 :
Sang nām $\mathrm{t}=1$ phải nâng cấp dê đạt 6,0 ;
Nām $\mathbf{t}=2$ nâng cấp tiếp đế dạt 5,8 ;
Đến năm $\mathrm{t}=3$ tiếp tục nâng cấp để đạt 5.6 ;
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

Hai năm tiếp theo sẽ lần lượt đạt mức 5,4 và 5,2 .
Kết quả cho tháy, đầu tư hàng năm theo phương án tối unu như bảng 4.6.

Hinh 4.8: Phitong án tốl ut.
Bảng 4.6.

Năm	Thò̀ gian QVTX	Sö TX mua	Chi phí mua TX	Chi phí nâng cắp	Cộng chi phi
$0-1$	$6,2-6,0$	254	736,6	258,61	995,21
$1-2$	$6,0-5,8$	325	942,5	258,61	1201,11
$2-3$	$5,8-5,6$	524	1519,6	258,61	1778,21
$3-4$	$5,6-5,4$	577	1673,3	258,61	1931,91
$4-5$	$5,4-5,2$	647	1876,3	258,61	2134,91
Cộng 5 nåm		2327	6748,3	$\mathbf{1 2 9 3 , 0 5}$	8041,35

127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

Chưong V
 LÂP TRÌNH GIẢI MÔT SỐ BÀI TOÁN QUY HOACH

Giải các bài toán Quy hoạch nói chung (tuyến tính, phi tuyến...) bằng tay là một công việc hết sức nặng nề, thậm chí nhàm chán, dể nhầm lần và tốn nhiều thời gian, công sức. Chẳng hạn giải bài toán vận tải với kích thước ma trận 10×10 trở lên là một sự thách thức lòng kiên nhẫn của bất cứ ai có ý định thực hiện bằng tay. Trong khi đó, với công cụ máy tính, chúng ta chỉ cẩn vài phút (chủ yếu là để nhập số liệu ban đầu) và hoàn toàn yên tâm về độ chính xác của kết quả.

Để có thể thu được thành quả đó, cần phải bỏ công sức (một lẩn duy nhất) lập trình cho máy tính. Bạn cũng có thể tận dụng phần mềm có sẫn nào đó, song chưa chā́c đã đáp ứng được yêu cầu của rièng bạn. Song với phần mềm tự mình tạo ra sẻ phù hợp với môi trường làm việc (quản lý Nhà nước, quán lý doanh nghiệp, nghiên cứu khoa học, giảng dạy...) do đó sẽ đắc dụng hơn.

Các dạng bài toán quy hoạch tuyến tính đã được giài quyết trọn vẹn. vì vậy ta có cơ sở dể xây dựng các phần mềm hoàn chïnh. Còn các bài toán quy hoạch phi tuyến do không có mô hình cụ thể nên rất khó lập một chương trình máy tính phổ quát.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

Trong chương trình này, chúng ta sẽ nghiên cứu phương pháp lập trình cho các bài toán quy hoạch tuyến tính dạng tổng quát cùng với bài toán đối ngâuu của nó, và bài toán vận tải.

Chúng ta cũng không sử dụng một ngôn ngữ lập trình cụ thể nào, mà chỉ nêu ra các yêu cầu và cách giải quyĉ́t các yêu cầu dó.

Riêng phương pháp quy hoạch dộng, để giúp bạn đọc tham khảo, chúng tôi giới thiẹ̀u một vān bản chương trình viết bằng ngôn ngữ Pascal giải quyĉ́t một bài toán cụ thể.

Một chương trình mang tính hoàn chỉnh là chương trình thực hiện được các chức năng sau đây.

1. Nhập Dữ liệu ban dẩu và quản trị dữ liệu

Dữ liệu của các bài toán quy hoạch thường có kích thước khá lớn, đã vậy, các dữ liệu muốn nhập vào máy đều phải qua khâu đầu tiên là gõ vào bàn phím. Đây là một tác nghiệp lạc hậu nhất của công nghệ lin học.

Để hạn chế tối đa cong sức, thời gian và sai sốt của nguời sử dụng. chương trình cần thoả mãn các yêu cầu sau đây:

- Chỉ phải gõ vào bàn phím các thông tin sơ cấp, nghĩa là những thông tin mà không thể suy ra từ các thông tin khác.
- Đật nhiều "Bẫy lỗi" dể nếu người sử dụng gõ sai thì có thể gõ lại chứ thông tin không bị mất đi.
- Có thể kết thúc việc nhập số liệu giữa chừng mà thoong 127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 154
tin không bị mất; có thể gọi lại tập thông tin đang nhập dở dang để nhập tiếp; có thể gọi một tập thông tin bất kỳ (đã nhập) để kiểm tra, sửa chữa, để in hoạac để giải bài toán.

2. Giải bài toán

Đương nhiên, người lập trình phải nắm vững phương pháp giải bài toán, phái lường trước được tất cả các khả năng có thể xảy ra, đôi khi phải sử dụng một số thủ thuật khác với làm tay (sẽ trình bày ở mục sau).

Chương trình phải lưu lại được (cho đến khi kết thúc) tất cả các lời giải - từ phương án tựa ban đầu đến phương án tối ưu. Nếu vì vậy mà bộ nhớ bị chiếm dụng quá nhiều thì cho in ra giáy từng phương án ngay sau khi xác định nó, hoạc lưu vào một file rêng.

Chương trình giải các bài toán QHTT thường phải sử dụng khá nhiều biến với kích thước khơng nhỏ, vì vậy cần tiết kiệm bộ nhớ. Chương trình dài một chúl nhựng có cấu trúc sáng sủa, sử dụng ít bộ nhớ thì tốt hơn chương trình ngắn gọn mà cấu trúc rắc rối và chiếm nhiều ô nhớ.

Để hạn chế việc sử dụng các vòng lập phức tạp, nên lập các chương trình con xử lý từng vấn dề, ví dụ các chương trình con về dọc dữ liệu từ file, đưa về dạng chính tấc, đánh giá phương án theo tiêu chuẩn tối ưu... Ngoài ra, trong quá trình soạn thảo, nên có những mẩu nhỏ chương trình kiểm tra (dành cho lập trình viên), bởi ý tưởng của lập trình viên không phải lúc nào cũng dúng.

3. In kết quà

Toàn bộ các nỗ lực của lập trình viên cuối cùng được thể hiện ở kết quả. Tuỳ theo yêu cầu của người sử dụng mà nội dung của "đầu ra" có thể khác nhau. Vậy cần lưu ý thoả mãn các yêu cầu khác nhau bằng cách cho in ra nhiều nội dung theo ý muốn, ví dụ:

- Các dữ liệu ban đầu (đầu bài):
- Phương án tối ưu và cận tối ưu;
- Toàn bộ các phương án tựa củ̉a lộ trình hoàn thiện phương án...

5.1. BÀI TOÁN QUY HOACH TUYẾN TÍNH VÀ BÀI TOÁN ĐỐI $N G A ̂ ̃ U ~ C U ̉ A ~ N O ́ ~$

5.1.1 Tổ chức dữ liệu thông tin

Đối với bài toán QHTT dạng tổng quát, các thông tin tối thicủu ban đầu phải được nhập vào máy từ bàn phím gồm:

Số bất đẳng thức và đẩng thức của hẹ̉ ràng buộc (ký hiệu M);

Số ẩn ban đầu của bài toán (N):
Dạng cực trị (Max, Min) của hàm mục tiêu (MT);
Các dấu ($=, \geq, \leq$) của hệ ràng buộc (D_{i} với $\mathrm{i}=1$.. M):
Giá trị hàm mục tiêu ($\mathrm{C}_{\mathrm{i} . \mathrm{j}}$ với $\mathrm{i}=\mathrm{I} . . \mathrm{M}$ và $\mathrm{j}=1 \ldots \mathrm{~N}$);
Giá trị các số hạng tự do ớ vế phải (B_{1});
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

Các hệ số vế trái của hệ ràng buộc (a_{ij}).
Như vậy dữ liệu ban đầu của bài toán QHTT gồm có $3+\mathrm{M}+\mathrm{N}+(\mathrm{M} . \mathrm{N})$ phần tử. Tất cả các phần tử này đều phải được lưu giữ lâu dài trong máy.

Có nhiều cách tổ chức lưu giữ các số liệu đó trong file. Sau đây chúng ta đề cập đến cách đơn giản nhất, đó là các số liệu theo tuần tự nêu trên được coi như các phần tử của một chuỗi số thực.

Muốn vậy ta quy ước:
Tiến tới Min thì $\mathrm{MT}=1$
Tiến tới Max thì MT $=2$
Dấu = tương ứng với $\mathrm{D}_{\mathrm{i}}=0$
Dấu \leq tương ứng với $\mathrm{D}_{\mathrm{i}}=1$
Dấu \geq tượng ứng với $D_{i}=2$
Các thông tin khác thì vốn đã được biểu diền bằng số thực rồi.

Với quy ước đó, người sử dụng chỉ phải gõ vào các phím số, dễ dàng hơn khi gõ vào các phím ký tự khác.

Dữ liệu ban đầu của mổi bài toán được lưu giữ trong 1 file có tên là:

$$
q h t t N o . d a t
$$

Trong đó No là các số nguyên, đó cunng là số thứ tự của bài toán (bài toán 01. bài toán $02 \ldots$).

Mổi phần tử trong file chiếm một vị trí, bắt đầu từ vị trí
thứ 0 , tiếp theo là $1,2 \ldots$ Mổi phần tử đó tương ứng với 1 biến ngoài. Ta có thể xác định sự tương ứng của phần tử thứ $\mathrm{k}(\mathrm{k}=0,1,2 \ldots)$ với biến ngoài theo quy tắc ở bảng 5.1.

Với quy tắc này ta có thể gọi bất cứ phần tử nào của file dể đọc, sửa chửa hoạ̣c tham gia các phép tính. Chẳng hạn nếu $\mathrm{M}=6, \mathrm{~N}=8$ thì phần tử $\mathrm{k}=25$ trong file ứng với biến ngoài nào?

Vì $\mathrm{k} \geq \mathrm{M}+\mathrm{N}+\mathrm{M}+3=23$ nên nó tương ứng với biến $\mathrm{a}_{\mathrm{i} j}$. trong đó:

$$
\begin{aligned}
& \mathrm{i}=(\mathrm{k}-23) \text { DIV } 8)+1=1 ; \\
& \mathrm{j}=(\mathrm{k}-23) \text { MOD } 8)+\mathrm{l}=3 .
\end{aligned}
$$

Bảng 5.1.

Vị tri phần tửk trong file	Biën ngoài
0	M
1	N
2	$M T$
$[3 \ldots M+2]$	$D_{i}(i=k-2)$
$[M+3 \ldots M+N+2]$	$C_{i}(j=k-M-2)$
$[M+N+3 \ldots M+N+M+2]$	$B_{i}(i=k-M-N-2)$
$k \geq M+N+M+3$	$a_{i j}$
	$C h o S=M+N+M+3, k h i$ aó
	$i=(k-s) D I V N)+1$
	$j=(k-s) M O D N)+1$.

5.1.2. Chương trinh con giới thiệu chức năng (MENU)

Màn hình giới thiệu các chức nāng của phần mềm để người sử dụng lựa chọn và quyết định:
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 158

- Thoát khỏi chương trình (0)
- Nhập mới dữ liệu của bài toán (1)
- Nhập bổ sung dữ liệu bài toán (2)
- Sửa chữa các số liệu đã nhập (3)
- Giải bài toán và cho kết quả (4).
a. Néu sư lưa chọn là (0): Máy thoát khỏi chương trình, kết thúc mọi công việc. Nên bố trí chương trình để chỗ này là "lối ra" duy nhất. Nếu có nhiĉ̀u "lối ra" ở nhiều chồ sẽ khó kiểm soát.
b. Nếu sự lưa chọn là (I): Máy phải tự động lập một file dữ liệu có tên không trùng với bất cứ tên file nào đã có trong máy, đồng thời báo cho người sử dụng tên file dữ liệu này.

Chẳng hạn ta muốn tát cả các file dữ liệu của các bài toán QHTT có tên là qhtiNo.dat. với No $=01,02 \ldots$ Lúc đầu trong máy chưa có tên ấy, máy sẽ dặt tên file mới là qhtt01.dat. Nếu No $=01$ đã có, máy sẽ đạat tên file mới là qhit02.dat, v.v...

Ghi nhận tên filc mới và thoát khỏi MENU (dể thực hiện việc nhập mới số liệu).
c. Nếu sư lưa chọn là (2):

- Máy hỏi: Bổ sung dữ liệu bài toán số máy?
- Nzười trả löt: Gõ W là một số nguyên nào đó.
- Máy tim file qhttW.dat.
+ Nếu không có thì thông báo: "Không có". Người sử dụng có thể gõ số khác hoặc chọn chức năng khác.
+ Nếu có nhưng file đã đủ số liệu thì thông báo "Số liệu đã đủ, không thể bổ sung". Nguời sử dụng cũng có thể gõ số khác hoạac chọn chức nảng khác.
+ Nếu có file đó, đồng thời số liệu còn thiếu thì ghi nhận tên file và ra khỏi MENU (để nhập bổ sung).
d. Nếu sư lưa chọn là (3):
- Máy hở: Sửa chữa bài toán số mấy?
- Ngıơot trả lới: Gõ W là một số nguyên nào đó.
- Máy đi tim file qhttW.dat.
+ Nếu không có thì thông báo: "Không có". Người sử dụng có thể gõ số khác hoặc chọn chức năng khác.
+ Nếu có nhưng file còn thiếu số liệu thì thông báo "Số liệu thiếu, chưa thể sửa chữa được ". Người sử dụng có thể gõ lại số khác hoạ̃c chọn chức nàng khác.
+ Nếu có và filc đã đủ số liệu thì ghi nhận tên file và ra kbòi MENU (dể thực hiện việc sửa chữa số liệu).
e. Nếu sự lưa chọn là (4)
- Máy hơi: Giải bài toán số mấy?
- Ngırờ trả lờ: Gō W là một số nguyên nào đó.
- Máy tim file qhıW.dat.
+ Nếu không có thì thông báo: "Không có". Người sử dụng có thể gõ số khác hoạ̣c chọn chức nảng khác.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 160
+ Nếu có nhưng fite còn thitếu'số liệu thì thông báo "Só́ liệu thiếu, chưa thể giạ̉i bài tọán được ". Người sử dụng có thể gõ lại. số khác hoặc chọṇ chức năng khác.
+ Nếu có và file đã đủ thì ghi: ahận tên file và ra khỏi MENU (dể thực hiện việc giải bài toán).

5.1.3. Chương trình con nhập mới số liệu (NHAP_MOI)

- Máy tính: Đạ xác điṇht dược tên file mới là qhttW.dat; Đọc và lần Jượt hiển thạ trệ mạ̀n hình tên của từng biến ngoài theo thứ tự yà quy tấc nêu ả mục 5.1.1.
- Ngıờit: Gõ vào bàn phím từng. giá trị tương ứng với các biến ngọài đã̉ hịiĉ̉n thị.

Sau khi gọ giá trị cuối cùng cưa tập dữ liệu, hoặc chưa phảil là giá trị cuối cùng, mạ̀ là một ký tự báo nghỉ (ví dụ ký tự \#) thì máy tự động ghịi vào fille, toàn bộ các giá trị đã nhập.

Như vậy, trong file dữ liệu:cớ thể chứa đầy đủ hoặc một phần tập dữ liệu ban đầu cûa bài toán.

5.1.4. Chương trinh con dọc file (DOC_FILE)

Chuyển đổi toàn bộ các̣ phẩn tử trong file ra biến ngoài tương ứng theo quy tác ở mục 5.1.1.

5.1.5. Chương trình con nhập bổ sung (NHAP_BS)

- Máy: Tìm, mở và đọc fịlle qhttW.dat. Cân cư số thứ tự cùa phẩn tử cuối cùng trong file và áp dụng quy tắc nêu ở mục 5.1.1 để hiộn thị lện màn hình tên của biến ngoài tương ứng với phần tử tiếp theo phải nhập.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012
- Người: Gō vào bàn phím giá trị tương ứng.

Gõ xong giá trị nào thì máy ghi ngay vào file giá trị đó. Nếu gõ xong giá trị cuối cùng hoặc ký tự nghỉ (ví dụ ký tự \#) thì đóng file và kết thúc.

5.1.6. Chương trinh con sửa chữa só liệu (SUA_CHUA)

- Máy: Tìm, mở và đọc file qhttW.đat. Chuyển đổi toàn bộ các phần tử trong file thành các biến ngoài (tên, giá trị) theo quy tắc ở mục 5.1.1. Hiển thị lên màn hình một cửa sở hỏi đáp và một cửa sổ dữ liệu. Trang cửa sổ dữ liệu cho hiển thị từng nhớm số liệu.

Ví dư: Cho hiện lên màn hình 6 phần tử đầu tiên của miồ file só liệu như ở bảng 5.2. Các phẩn tử này cho thấy: bài toán có 3 ràng buộc, 4 ẩn, hàm mục tiêu tiến tới Min. Dấu quan hệ của 3 ràng buộc lần lượt là không nhỏ hơn, không lớn hơn và không lớn hơn.

Bảng 5.2.

Thứ tự	Biến	Giá trị cū	Giá trị mói
(1)	(2)	(3)	(4)
0	M	3	
1	N	4	
2	MT	$1(\mathrm{Min})$	
3	D_{1}	$2(\geq)$	
4	D_{2}	$1(\leq)$	
5	D_{3}	$1(\leq)$	

127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 162

- Máy hỏi: Sai phần tử thứ mấy?
- Ngı̛ỡi: Gõ một số (tại trang đang hiển thị ở bảng 5.2 chỉ được phép gõ các số từ 1 đến 5 . Néu gõ sai thì máy yêu cầu gõ lại).
- Máy: Đưa con trỏ lên dòng tương ứng ở cột 4.
- Ngườt: Gõ giá trị mới.
- Máy: Ghi vào file giá trị mới đè lên phần tử đang có ở vị tí tương ứng. Trong bảng 5.2 , cột thứ tự cūng chính là vị trí của các phần tử trong file.

Nếu nhận được từ bàn phím ký tự Enter thì hiển thị trang khác. Cứ thế cho đến trang có phần tử cuối cùng.

Litt ý: Không cho phép sửa chữa phần tử thứ 0 và thứ 1 , bởi nếu M và N thay đổi thì toàn bộ cấu trúc của file sc̃ bị phá vỡ.

5.1.7. Chương trình con đưa bài toán về dạng chính tắc (CHINH_TAC)

Mục đích của chương trình con này là biến các bất dẳng thức của hệ ràng buộc thành các đẳng thức có vế phải không âm. Thuật toán như sau:
$\mathrm{a} /$ Cho i đi từ J đến M .

- Nếu $\mathrm{D}_{\mathrm{k}}=1$ (bất đẳng thức k có dấu \leq) thì:
$\mathrm{N}=\mathrm{N}+1$ (thêm l cột cúa ma trận ràng buộc);

$$
a_{k . N}=1 ;
$$

127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{i}, \mathrm{~N}}=0 \text { vớ } \mathrm{i} \neq \mathrm{k} ; \\
& \mathrm{C}_{\mathrm{N}}=0 .
\end{aligned}
$$

Tức là thêm 1 cột ma trận đơn vị cấp M có $\mathrm{a}_{\mathrm{kN}}=1$, hệ số hàm mục tiêu $\mathrm{C}_{\mathrm{N}}=0$. Điều này cūng có nghīa là đã thêm một ẩn phụ $\mathrm{x}_{\mathrm{k}, \mathrm{N}}$.

- Nếu $\mathrm{D}_{\mathrm{k}}=2$ (bất đẩng thức k có dấu \geq) thì:

$$
\begin{aligned}
& a_{k j}=-a_{k, j} ; b_{k}=-b_{k} \quad \text { với } j=1 . . N \text { (đổi dấu } 2 \text { vê); } \\
& N=N+1 ;
\end{aligned}
$$

Sạ khi đổi dấu 2 vế thì thực hiện như trường hợp trên:

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{kN},}=1 ; \\
& \mathrm{a}_{\mathrm{i}, \mathrm{~N}}=0(\mathrm{i} \neq \mathrm{k}) ; \\
& \mathrm{C}_{\mathrm{N}}=0 .
\end{aligned}
$$

Thực hiện xong bước này, ta có M phương trình. Có bao nhiêu bất đẳng thức phải xử lý thì nay hệ phương trình có bấy nhiêu ẩn phụ với hệ số là 1 , còn hệ số của chúng ở hàm mục tiêu là 0 .
b/ Phương trình nào mà vĉ́ phải nhận giá trị âm thì nhân cả 2 vế với - 1 (để vế phải không âm).
5.1.8. Chương trình con tìm phương án tựa ban dẩu (PA-TUA)

Ta biết rằng phương án tựa phải có đủ M ẩn cơ bản nhận giá trị vế phải không âm (các ẩn còn lại gọi là ẩn tự do có giá trị bằng 0).
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 164

Gọi chỉ số của các ẩn cơ bản là $\mathrm{e}_{\mathrm{i}}(\mathrm{i}=1 . . \mathrm{M})$; giá trị hệ số hàm mục tiêu của các ẩn đó là $\mathrm{G}_{\mathrm{i}}(\mathrm{i}=1 . . \mathrm{M})$; số hạng tự do ở vế phải ứng với các ẩn đó là $\mathrm{T}_{\mathrm{i}}(\mathrm{i}=1 . . \mathrm{M})$. Khi đó néu tìm được danh sách các ẩn cơ bản (có chỉ số là e_{i}) thì ta có ngay G_{i} và T, tương ứng, cūng tính được ngay giá trị của hàm mục tiêu là tích của 2 véc tơ G_{i} và T_{i}.

Ta cũng đã biết rằng các ẩn cơ bản ứng với các cột của ma trận đơn vị cấp M , do đó phải tìm (nếu không có thì lập) ma trận đơn vị trong ma trận hệ ràng buộc. Thuật toán như sau:

1. Xét hàng $\mathbf{k}=1$;
2. Xét từng cột $\mathrm{j}=1$.. N :

- Nếu cột s có $\mathrm{a}_{\mathrm{k}, \mathrm{s}}>0$ và các phẩn tử còn lại bằng 0 thì:

$$
\begin{array}{l|l}
\mathrm{a}_{\mathrm{k}, \mathrm{j}}=\mathrm{a}_{\mathrm{k} . \mathrm{j}} / \mathrm{a}_{\mathrm{k}, \mathrm{~s}} & \text { (Chia cả } 2 \text { vế cho } \mathrm{a}_{\mathrm{k}, \mathrm{~s}} \text {) } \\
\mathrm{T}_{\mathrm{k}}=\mathrm{T}_{\mathrm{k}} / \mathrm{a}_{\mathrm{k}, \mathrm{~s}} \\
\mathrm{c}_{\mathrm{k}}=\mathrm{s}\left(\mathrm{x}_{\mathrm{s}}\right. \text { là một ẩn cơ bản). } \\
\mathrm{G}_{\mathrm{k}}=\mathrm{C}_{\mathrm{s}} . \\
\mathrm{k}=\mathrm{k}+1
\end{array}
$$

Nếu $\mathrm{k} \leq \mathrm{M}$ thì quay lại công việc 2 .
Nếu $\mathrm{k}>\mathrm{M}$ thì chuyển đến công việc 3 .

- Nếu không có cột nào đáp ứng được yêu cầu đó thì:

$$
\begin{aligned}
& \mathrm{N}=\mathrm{N}+1 \\
& \mathrm{a}_{\mathrm{k}, \mathrm{~N}}=1: \\
& \mathrm{a}_{\mathrm{i}, \mathrm{~N}}=0(\mathrm{i}=1 \ldots \mathrm{M} \text { và } \neq \mathrm{k})
\end{aligned}
$$

(Thêm 1 cột của ma trận đơn vị).
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012
$\mathrm{e}_{\mathrm{k}}=\mathrm{N} ; \mathrm{G}_{\mathrm{k}}=\mathrm{MM}$ (MM là số dương lớn tuỳ ý);
(T_{k} không thay dổi);

$$
\mathrm{k}=\mathrm{k}+1
$$

Nếu $\mathrm{k} \leq \mathrm{M}$ thì quay lại công việc 2 .
Nếu $\mathrm{k}>\mathrm{M}$ thì chuyển đến công việc 3 .
3. Thực hiện phép nhân véc tơ cột G_{i} với véc tơ cột T_{i} dể có giá trị hàm mục tiêu Z.
4. Cột T_{i} là cột $j=0$ của ma trận hệ ràng buộc: $\mathrm{a}_{\mathrm{i}, \mathrm{s}}=\mathrm{T}_{\mathrm{i}}$ $(\mathrm{i}=1 . . \mathrm{M})$. Từ nay không nhắc đến biến B_{i} nữa.
5.1.9. Chương trình con đánh giá phuoong án (DANH_GIA_PA)
$1 / j=1$
$2 / \mathrm{S}=\sum_{i=1}^{M} a_{i j} \cdot G_{i j}$ (S là tích của 2 véc tơ cột).
$\Delta_{\mathrm{j}}=\mathrm{S}-\mathrm{C}_{\mathrm{j}}^{\mathrm{j}}$
$\mathrm{j}=\mathrm{j}+1$;
Nếu $\mathrm{j} \leq \mathrm{N}$ thì quay lại công việc 2 .
Nếu $\mathrm{j}>\mathrm{N}$ thì chuyển đến công việc 3 .
3/ Nếu tất cả các $\Delta_{\mathrm{j}} \leq 0$ thì đánh giá là "tối ưu", còn nếu chỉ 1 giá trị $\Delta_{j}>0$ thì đánh giá là "không tới ưu".
5.1.10. Chương trinh con lập phương án mới (LAP_PA_MOI)
$1 / \operatorname{Tim} \Delta_{\mathrm{s}}=\max \Delta_{\mathrm{j}}(\mathrm{j}=1 \ldots \mathrm{~N})$ (x_{s} là ẩn được chọn).
2/ Tìm ẩn bị loại x_{k}
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 166

Tính $\mathrm{TS}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i} . \mathrm{s}} / \mathrm{a}_{\mathrm{is}}$ với $\mathrm{a}_{\mathrm{is}} \neq 0(\mathrm{i}=1 . . \mathrm{M})$;
Tìm $\mathrm{TS}_{\mathrm{k}}=\operatorname{Min} \mathrm{TS}_{\mathrm{i}}$ với $\mathrm{TS}_{\mathrm{i}} \geq 0$.
Nếu không có TS_{k} vào đạt yêu cầu đó thì thông báo "Bài toán vô nghiệm" và thoát khỏi chương trình con.

3/ Thay ẩn bị loại x_{x} bằng ẩn được chọn $\mathrm{X}_{\mathrm{s} \text {. }}$

$$
e_{k}=s ; G_{k}=C_{s}
$$

4/ Tính các phần tử trên hàng k của ma trận mới:

$$
\mathrm{a}_{\mathrm{k}, \mathrm{j}}^{\prime}=\mathrm{a}_{\mathrm{k}, \mathrm{j}} / \mathrm{a}_{\mathrm{k}, \mathrm{~s}}(\mathrm{j}=0 \ldots \mathrm{~N}) .
$$

5/ Tính các phần tử trên các hàng khác của ma trận mới:

$$
\begin{aligned}
& a^{\prime}{ }_{i j}=a_{i j}-a_{i, 5} a^{\prime}{ }_{k, j} \\
& \left(i=1 . . M_{\text {va }} \neq k ; j=0 . . N\right)
\end{aligned}
$$

6/ Sử dụng lại tên biến cũ cho phương án mới:

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{ij}}=\mathrm{a}^{\prime}{ }_{i j} \\
& \mathrm{i}=1 . . \mathrm{M} ; \mathrm{j}=0 . . \mathrm{N}) \\
& 7 / \quad \mathrm{Z}=\sum_{\mathrm{i}=1}^{\mathrm{M}} \mathrm{G}_{\mathrm{i}} \cdot \mathrm{a}_{\mathrm{i}, \mathrm{o}}
\end{aligned}
$$

Với 7 công việc này, ta đā có 1 phương án tựa mới.

5.1.11. Chương trình con in kết quà (IN_KQ)

- Có thể chỉ in ra các thông tin tối thiểu: giá trị các ẩn cơ bản, giá trị hàm mục tiêu, đánh giá phương án (tối ưu hay không tối ưu).
- Có thể in thêm cả ma trận mở rộng và số kiểm tra.

Chit ý: Nếu đã là phương án tối ưu, nhưng trong số ẩn
cơ bản có ẩn giả nhận giá trị khác 0 thì phải in thêm thông báo: "Bài toán vô nghiệm".

5.1.12. Chương trình con bài toán đối ngẫu (DOI_NGAU)

Mục đích của chương trình con này là lập mô hình bài toán đối ngầu của bài toán gốc mà các dữ liệu của bài toán gốc đã được nhập vào máy trước đó.

Bài toán đối ngẩu, mạ̃c dù không phải vào số liệu, nhưng đã có đầy đủ thông tin cần thiết của nó, vì vậy có thể tận dụng luôn chương trình giải bài toán QHTT dể giải nó.

1/Giao diện:

- Máy hở: Có giải bài toán đối ngầu không?
- Ngırời: Có (nếu gõ số 1) hoặc Không (nếu gõ só 0).
- Nếu là số 0 thì Exit.

2/ DOC_FILE ($Đ o ̣ c ~ d u ̛ ̃ ~ l i e ̣ ̂ u ~ b a ̀ i ~ t o a ́ n ~ g o ̂ ́ c) . ~$
3/ Nếu hàm mục tiêu là Min thì cho:
MT=2 (tiến tới Max);

$$
C_{j}=-C_{j}(j=1 . . N)
$$

4/ Nếu bất đẳng thức thứ k có dạng \geq thì:

$$
\begin{aligned}
& a_{k, j}=-a_{k, j}(j=1 . . N): \\
& b_{k}=-b_{k} .
\end{aligned}
$$

5/ Mô hình bài toán dối ngẫu:
Hàm mục tiêu MT1 = 1 ;
Số lượng ẩn $\mathrm{N} 1=\mathrm{M}$;
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 168

Số lượng ràng buộc $\mathrm{M} 1=\mathrm{N}$;
Các dấu của các ràng buộc $\mathrm{Dl}_{\mathrm{i}}=2(\mathrm{i}=1 . . \mathrm{N})$;
Các hệ số hàm mục tiêu $\mathrm{Cl}_{\mathrm{j}}=\mathrm{b}_{\mathrm{i}}(\mathrm{j}=1 . . \mathrm{M} ; \mathrm{i}=1 . . \mathrm{M})$;
Các hệ số ràng buộc $\mathrm{a}_{\mathrm{ji}}=\mathrm{a}_{\mathrm{ij}}(\mathrm{i}=1 . . \mathrm{M} ; \mathrm{j}=1 . . \mathrm{N})$.
6/ Sử dụng lại các tên biến quen thuộc để phù hợp với chương trình giải bài toán QHTT có sañ:

$$
\begin{aligned}
& \mathrm{M}=\mathrm{M} 1 ; \mathrm{N}=\mathrm{N} 1 ; \mathrm{MT}=\mathrm{MT} 1 ; \\
& \mathrm{D}_{\mathrm{i}}=\mathrm{D} 1,(\mathrm{i}=1 . . \mathrm{M}) ; \\
& \mathrm{C}_{\mathrm{j}}=\mathrm{C} 1_{\mathrm{j}}(\mathrm{j}=1 . . \mathrm{N}) ; \\
& \mathrm{b}_{\mathrm{i}}=\mathrm{b} 1_{i}(\mathrm{i}=1 . . \mathrm{M}) ; \\
& \mathrm{a}_{\mathrm{ij}}=\mathrm{a} 1_{\mathrm{ij}}(\mathrm{i}=1 . . \mathrm{M} ; \mathrm{j}=1 . . \mathrm{N}) .
\end{aligned}
$$

5.1.13. Chương trình chính

Lúc này chương trình chính chỉ gồm các lệnh thực hiện tuần tự các chương trình con:
a/ ME _NU
Nếu chọn 1 thì đến b;
Nếu chọn 2 thì đến c ;
Nếu chọn 3 thì đến d;
Nếu chọn 4 thì đến e;
Nếu chọn 0 thì Exit.
b/ NHAP_MOI; Quay lại a.
c/ NHAP_BS; Quay lai a.
d/ SUA_CHUA; Quay lại a.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012
e/ DOC_FILE; CHINH_TAC; PA_TUA;
f/ DANH _GIA_PA; IN-KQ.
Nếu "phương án tối ưu" thì quay lại a.
Nếu "phương án không tối ưu" thì đến g.
g/LAP_PA_MOI
Nếu "bài toán vô nghiệm" thì quay lại a.
Nếu không như vậy thì quay lại f.
Chú ý: Sau khi thực hiện DANH_GIA_PA thì nên cho in luôn. Nếu dùng các biến trung gian để lưu giữ kết quả, sau đó cho in một lần thì có thể máy tính không chấp nhận vì quá nhiều biến. Tuy vậy, máy tính sē chấp nhận nếu sử dụng 1 file trung gian lưu giữ kết quả, sau đó gọi từ file này ra để in.

5.2. LẬP TRİNH GLẢI BÀI TOÁN VẬN TẢI

Trong mục này, những nội dung nào tương tự như lập trình giải quyết bài toán QHTT dạng tổng quát thì sẽ không được nhắc lại. Bạn đọc chỉ việc xem lại mục 5.1 là nắm được.

5.2.1. Tổ chức dữ liệu thông tin

Các thông tin tối thiểu ban đầu gồm:
Số điểm gửi (M);
Số điểm nhận (N);
Khối lượng tại các điểm gửi $\quad\left(\mathrm{a}_{\mathrm{i}} ; \mathrm{i}=1 \ldots \mathrm{M}\right)$;
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 170

Khối lượng tại các điểm nhận $\quad\left(\mathrm{b}_{\mathrm{j}} ; \mathrm{j}=1 \ldots \mathrm{~N}\right)$;
Hệ số hàm mục tiêu (c_{ij}).
Như vậy 1 tập dữ liệu đầy đủ gồm $2+\mathrm{M}+\mathrm{N}+\mathrm{M}$. N phần tử.
Bố trí mổi file dữ liệu lưu giữ 1 tập, các file đó có tên btvt01.dat, btvt02.dat, v.v...

Nếu file dữ liệu là một chuổi số thực thì sự liên hệ giữa các phần tử file với biến ngoài theo quy tắc ghi ở bảng 5.2.

Bảng 5.2.

Vị tri phẩn tử k trong file	Biến ngoài
0	M
1	N
$2 . . M+1$	$a_{i}(i=1 . . M)$
$M+2 . . M+N+1$	$b_{i}(j=1 . . N)$
$k \geq M+N+2$	$C_{i i}$
	$C_{h o} S=M+N+2$
	$K h i$ đó:
	$i=((k-s)$ DIVN $)+1 ;$
	$j=((k-s)$ MOD $N)+1 ;$

Các chương trình con ME_NU, NHAP_MOI, NHAP._BS. SUA_CHUA, DOC_FILE tương tự như các chương trình con cùng tên ở mục 5.1.
5.2.2. Chương trình con đưa bài toản vể dạng chính tắc (CHINH_TAC).

Ta đả biết, nếu tổng khối lượng cầu > tổng khối lượng
cung thì phải thêm các điểm gửi phụ, nếu ngược lại thì phải thêm các điểm nhận phụ.

$$
\text { CUNG }=\sum_{i-1}^{M} \mathrm{a}_{1} ; \mathrm{CAU}=\sum_{\mathrm{j}=1}^{\mathrm{N}} \mathrm{j}^{2}
$$

Nếu CUNG > CAU thì:
$\mathrm{N}=\mathrm{N}+\mathrm{l} ; \mathrm{b}_{\mathrm{n}}=$ CUNG-CAU.
$\mathrm{C}_{\mathrm{i}, \mathrm{N}}=0(\mathrm{i}=1 . . \mathrm{M})$
Nếu CUNG < CAU thì:
$\mathrm{M}=\mathrm{M}+\mathrm{I} ; \mathrm{a}_{\mathrm{M}}=$ CAU-CUNG.
$\mathrm{C}_{\mathrm{j}, \mathrm{M}}=0(\mathrm{j}=\mathrm{I} . . \mathrm{N})$.
5.2.3. Chương trinh con tìm phương án tựa ban dầu (PA_TUA)

Ở đây ta chỉ đề cập đến phương pháp góc Tây Bắc. Mặc dù phương án có thể khá xa phương án tối ưu, song máy tính chạy thêm vài phẩn của giây thì cũng chẳng sao. Tuy vậy bạn có thể thay nó bằng phương pháp khác, nếu muốn.

$$
\begin{aligned}
& 1 / i=1 ; \\
& 2 / j=1 ; \\
& 3 / \text { Nếu } a_{i} \geq b_{j} \text { thì: } x_{i j}=b_{1}: a_{1}=a_{i}-b_{j} ; b_{j}=0 . \\
& \text { Nếu } a_{1}<b_{j} \text { thì: } x_{i j}=a_{1} ; b_{1}=b_{j}-a_{i} ; a_{i}=0 \text {. } \\
& 4 / j=j+1 ; \text { Nĉ́u } j \leq N \text { thì quay lại } 3 . \\
& 5 / i=i+1 ; \text { Nếu } i \leq M \text { thì quay lại } 2 . \\
& 6 / \text { Tính giá trị hàm mục tiêu: }
\end{aligned}
$$

127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

$$
Z=\sum_{i=1}^{M} \sum_{j=1}^{N} x_{i j} \cdot c_{i j}
$$

7/ Đánh dấu các ẩn cơ bản bằng biến G_{ij} :

$$
\begin{aligned}
& \mathrm{G}_{\mathrm{ij}}=1 \text { nếu } \mathrm{x}_{\mathrm{ij}}>0 ; \\
& \mathrm{G}_{\mathrm{ij}}=0 \text { nếu } \mathrm{x}_{\mathrm{ij}}=0 ;
\end{aligned}
$$

8/ Đếm số lượng ẩn cơ bản:

$$
A B C=\sum_{i=1}^{M} \sum_{j=1}^{N} G_{i j}
$$

5.2.4. Chương trình con xàc dịnh só dỉnh của chu trinh (SO_DINH_CT)

Ta gọi ô có $\mathrm{G}_{\mathrm{ij}}=1$ là ô bận, ô có $\mathrm{G}_{\mathrm{ij}}=0$ là ô tự do.
Vấn đề đặt ra là với một tập ô bận nào đó thì có tạo ra chu trình hay không? Nếu có thì chu trình gồm mấy đỉnh?

Thuật toán như sau là một "bí quyết" đáng quan tâm:
$1 /$ Cho $\mathrm{y}_{\mathrm{ij}}=\mathrm{G}_{\mathrm{ij}}(\mathrm{i}=1 . . \mathrm{M} ; \mathrm{j}=1 . . \mathrm{N}) ; \mathrm{W}=1$ (W là số vòng lạp).
$2 / \mathrm{i}=1 ;$
3/ Nếu trên hàng i chỉ có 1 giá trị $y_{1 s}=1$ thì cho $y_{i s}=0$.
$4 / i=j+1$; Nếu $i \leq M$ thì quay lại 3 .
$5 / \mathrm{j}=1$;
6/ Nếu trên cột j chỉ có 1 giá trị $y_{k_{\mathrm{j}}}=1$ thì cho $y_{\mathrm{k}}^{\mathrm{j}}=0$.
$7 / \mathrm{j}=\mathrm{j}+1$; Nếu $\mathrm{j} \leq \mathrm{N}$ thì quay lại 6 .
$8 / \mathbf{W}=W+1$; Nếu $\mathrm{W} \leq \mathbf{M}+\mathrm{N}$ thì quay lại 2 .
127.0.0.1.downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

9/ Số dỉnh $=\sum_{\mathrm{i}=1}^{\mathrm{M}} \sum_{\mathrm{j}=1}^{\mathrm{N}} \mathrm{y}_{\mathrm{ij}}$
Ghi chú: Thuật toán này có ý nghĩa như sau:
Hàng nào chỉ có 1 ô bận duy nhất thì bỏ nó đi;
Cột nào chỉ có 1 ô bận duy nhất thì bỏ nó đi.
Lạ̣p lại vài lần như thế (tốt nhất là $\mathrm{M}+\mathrm{N}$ lần), ta sẽ có kết quả: hoạ̣c là không còn ô bận nào (tức là không có chu trình), hoạac là có chu trình với $4,6,8 \ldots$ dỉnh.

5.2.5. Chương trình con lập chu trình (LAP_CT)

Mục đích của chương trình con này là lập chu trình giữa các ô đỉnh với nội dung: Số thứ tự của mổi đỉnh (bắt đầu từ $\hat{o}(\mathrm{p}, \mathrm{q})$ có số thứ tự là l$)$ và giá trị x_{ij} tại các ô đỉnh.

Trén hàng p có thể có $2,4,6 \ldots$ ô đỉnh, trong đó ô $(\mathrm{p}, 1)$ được coi là ô đỉnh số 1 , vậy ô đỉnh còn lại nào được coi là ô số hai? Trên cột q cuñg vậy. Thuật toán sau dây là một "bí quyết" của phần mềm này:

1/ Thực hiện chương trình con SO_DINH_CT.
Lúc này trên ma trận y_{ij} chỉ còn lại các ô đỉnh của chu trình.

Gọi ô (p, q) là ô đỉnh số $1 . \mathrm{D}=1$.
2/ Xác định số thứ tự các ô bận trên hàng p, trong đó ô (p, q) là ô bận thứ I (cần phân biệt số thứ tự đỉnh của chu trình với số thứ tự ô bận trên hàng hoặc trên cột).
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 174

3/ Nếu t là số chẵn thì đỉnh có số thứ tự tiếp theo là ô bận gần nhất bên trái nó. Nếu t là số lẻ thì đỉnh có số thứ tiếp theo là ô bận gần nhất bên phải nó. $\mathrm{D}=\mathrm{D}+1$.

Lúc này chỉ số p, q được gán cho ô đỉnh mới.
4/ Nếu $\mathrm{D}=$ số đỉnh thì ra khỏi chương trình con.
5/ Xác định số thứ tự các ô bận trên côt q , trong đó ô (p, q) là ô bận thứ t .

6/ Nếu t là số chẫn thì đỉnh có số thứ tự tiếp theo là ô bận gần nhất phía trên nó. Nếu t là số lẻ thì đỉnh có số thứ tự tiếp theo là ô bận gần nhất bên dưới nó. $\mathrm{D}=\mathrm{D}+1$.

Gán chỉ số p, q cho ô đỉnh mới.
7/ Quay lại 2. (lối ra ở 4).

5.2.6. Chương trình con chống suy biến (CHONG_SB)

Nếu số ẩn cơ bản $<\mathrm{M}+\mathrm{N}-1$ giá trị khác 0 thì phải bổ sung một số ẩn tự do (có giá trị bằng 0) vào hệ thống các ẩn cơ bản (gọi là cơ sở) cho đủ. Ô tự do được bổ sung phải là ô mà khi có nó thì không tạo nên một chu trình nào. Chạy chương trình con SO_DINH_CT ở trên sẽ khẳng định việc đưa thêm ô k, s vào cơ sở thì có tạo thành chu trình hay không.

Thuật toán chống suy biến như sau:
$1 /$ Tìm ô đầu tiên có $\mathrm{G}_{\mathrm{ks}}=0$ và cho $\mathrm{G}_{\mathrm{ks}}=1$.
2/ Thực hiện chương trình con SO_{-}DINH_CT.
$3 /$ Nếu số dỉnh >0 (có chu trình) thì cho $\mathrm{G}_{\mathrm{ks}}=-1$.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012
(Đây là cách đánh dấu ô đó để không chọn lại nó nữa) và quay lại 2.

4/ Nếu số đỉnh $=0$ (không có chu trình, đương nhièn vẩn giữ $\mathrm{G}_{\mathrm{k}}=1$), đồng thời;

- Nếu số ẩn cơ bản đã đủ thì thực hiện công việc 5 .
- Nếu số ẩn cơ bản chưa đủ $\mathrm{M}+\mathrm{N}-1$ ẩn thì quay lại 2.

5/ Nếu $\mathrm{G}_{\mathrm{ij}}=-1$ thì trả lại giá tị̣ ban đầu cho nó là $\mathrm{G}_{\mathrm{ij}}=0$.
Như vậy, khi ra khỏi chương trình con này ta đã có đủ $\mathrm{M}+\mathrm{N}-1$ ẩn cơ bản (tuy có ẩn cơ bản bằng 0) được thể hiện trên ma trận G_{ij} (các ẩn cơ bản ứng với $\mathrm{G}_{\mathrm{ij}}=1$).
5.2.7. Đánh giá phương án (chương trinh con DANH_GIA_PA)

Chương trình con này có mục đích đánh giá phương án đang xét đã tối ưu hay chưa bằng cách:

- Tìm U_{i} và V_{j} đối với cạ́c ô bậṇ $\left(\mathrm{G}_{\mathrm{ij}}=1\right)$;
- Tính $\mathrm{D}=\mathrm{V}_{\mathrm{i}}-\mathrm{U}_{\mathrm{i}}-\mathrm{C}_{\mathrm{ij}}$ đói với các ó tư do $\left(\mathrm{G}_{\mathrm{ij}}=0\right.$);

Nếu tất cà các giâ trị W dều ≤ 0 thì phương án đó là tởi ưu. Thuật toán nhitu sau:

1/ Cho $\mathrm{U}_{1}=0$ và giải hệ phương trình $\mathrm{V}_{1}=\mathrm{U}_{\mathrm{i}}+\mathrm{C}_{\mathrm{ij}}$ với các biến là $\mathrm{U}_{2}, \mathrm{U}_{3} \ldots \mathrm{U}_{\mathrm{M}}, \mathrm{V}_{1} \mathrm{~V}_{2}, \ldots \mathrm{~V}_{\mathrm{n}}$.

2/ Tính $\mathrm{D}=\mathrm{V}_{\mathrm{j}}-\mathrm{U}_{\mathrm{i}}-\mathrm{C}_{\mathrm{ij}}$ với $\mathrm{i}=1 . . \mathrm{M}$ vâ $\mathrm{j}=1$.. N. Chỉ cần một giá trị $\mathrm{D}>0$ là kềt luận "Phương ăn không tối ưu"; còn néu tất cả các głá trị $\mathrm{D} \leq 0$ thì đố là "Phương án tói uư".
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 176
5.2.8. Chương trình con hoàn thiện phương án (HOAN_THIEN_PA)

Thuật toán như sau:
1/ Tìm ô (t, r) có $V_{r}-U_{t}-C_{t r}$ là giá trị lớn nhất của biểu thức $V_{j}-\mathrm{U}_{\mathrm{i}}-\mathrm{C}_{\mathrm{ij}}(\mathrm{i}=1 . . \mathrm{M} ; \mathrm{j}=1 . . \mathrm{N})$.

Cho $\mathrm{G}_{\mathrm{ir}}=1$ (lúc này ma trận G_{ij} có $\mathrm{M}+\mathrm{N}$ giá trị bằng l).
2/ Thực hiện chương trình con LAP_CT.
Chương trình con này sẽ cho biết số đỉnh của chu trình, số thứ tự các dỉnh của chu trình (trong đó ô t,r là ô số 1), giá trị x_{ij} ở từng dỉnh đó.

3/ Tim $\mathrm{W}=\mathrm{X}_{\mathrm{ks}}$ là min x_{ij} trên các đỉnh số chã̃n. W chính là lượng tính chuyển.

4/ Với môi đỉnh mang số lẻ thì $\mathrm{x}_{\mathrm{ij}}=\mathrm{x}_{\mathrm{ij}}+\mathrm{W}$.
Với mối đỉnh mang số chẳn thì $\mathrm{x}_{\mathrm{ij}}=\mathrm{x}_{\mathrm{ij}}-\mathrm{W}$.
5/ Cho $\mathrm{G}_{\mathrm{k}, \mathrm{s}}=0$ (loại ô k, s ra khỏi danh sách đánh ẩn cơ bản). Đến đây ta đã cơ phương án mới.

5.2.9. Chương trình con in kết quả (IN_KQ)

Nên in ra màn hình nội dung của tất cả các phương án theo các bước hoàn thiện. Nội dung mổi phương án gồm số thứ tự phương án. giá trị hàm mục tiêu Z. giá trị các biến x_{ij} >0, lời dánh giá có tối ưu hay không.

5.2.10. Nội dung chương trình chính

1/ Thực hiện ME _NU. Giả sử biến chọn chức nāng là Me.

2/ Nếu $\mathrm{Me}=1$ thì thực hiện NHAP_MOI và quay lại 1 .
Nếu $\mathrm{Me}=2$ thì thực hiện NHAP_BS và quay lại 1 .
Nếu $\mathrm{Me}=3$ thì thực hiện SUA_CHUA và quay lại 1 .
Nếu $\mathrm{Me}=4$ thì thực hiện công việc 3 .
Nếu $\mathrm{Me}=0$ thì ra khỏi chương trình.
3/ DOC_FILE; CHINH_TAC; PA_TUA.
4/ Nếu số ẩn cơ bản thiếu thì CHONG_SB.
5/ DANH_GIA_PA; Nếu "phương án tối ưu" thì đến 7.
6/ HOAN_THIEN_PA; Quay lại 5.
7/ IN_KQ.
8/ Quay lại 1.
5.3. CHƯƠNG TRİNH GIẢI BÀI TOÁN TÌM PHỨ̛NG ÁN QUAY VÒNG TOA XE TỐI UU THEO PHƯONG PHÁP QUY HOACH ĐỘNG

Phương pháp quy hoạch động không đưa ra một công thức cụ thể nào. Mổi bài toán lại có thể biĉ̉u diển bằng một mô hình toán học rièng. Chính vì vậy khó có thể xây dựng một phần mềm máy tính để sử dụng cho mọi bài toán như các chương trình giải bài toán quy hoạch tuyến tính.

Tuy váy, các bài toán QHĐ chỉ khác nhau về dạng hàm diều khièn, các hàm trung gian, số lượng giai đoạn và số lượng trạng thái trên mổi giai đoạn, còn chiến lược giải bài toán là như nhau, nghĩa là có thể sứ dụng hành trình xuôi
chiều hoạac hành trình ngược chiều để giải chúng. Thuật toán quan trọng nhất của chương trình là: trong vô số các "lối đi" từ A đến Z , ta chỉ giữ lại một số ít lối đi mà - theo nguyên lí Bellman - phương án tối ưu chác chắn sẽ đi qua một trong những lối đó.

Để giúp bạn dọc tham khảo, chúng tôi giới thiệu một chương trình giải bài toán cụ thể trong chương 4, mục 4.2.2 bằng ngôn ngữ Pascal. Bài toán được giải theo hành trình ngược chiều.

Vì số lượng thông tin của dữ liệu ban đầu ít, chúng được ghi ngay vào văn bản chương trình. Đây là một chương trình ngắn, gọn, vì vậy bạn có thể điều chỉnh tùy ý cho phù hợp với bài toán của mình và cho chạy trên máy để kiểm tra kết quả.

PROGAM PHUONG_AN_DAU_TU_QVTX;

USES Crt, Printer;
LABEL A1,A2,A3;
TYPE

> Kieu =Array[0..10,0..10] of Real;
> Kieu2=Array[0..10,0..10] of Integer;
> Kieu3=Array[0..10] of Real;
> Kieu4=Array[0..10] of Integer;
> Kicu5=Array[0..10,0..10,0..10] of Real;
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

VAR

$\mathrm{t}, \mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{N}$: Integer;
p, D, W, v, X1, X2, NN: Real;
Q, R: Kieul;
Goc, Ngon: Kieu2;
A: Kieu3;
M: Kieu4;
G, TX, F, FF: Kieu5;

BEGIN

$\mathrm{N}:=5$; (* có các giai doạn: $\left.0,1, \ldots, 5^{*}\right)$
$\mathrm{M}[0]:=1 ;$ (*nàm $t=0$ chỉ có 1 trạng thái*)
For $\mathrm{t}:=1$ to 5 do $\mathrm{M}[\mathrm{t}]:=6$: (* những năm khác có 6 trạng thái*)
$\mathrm{Q}[0,1]:=6.2$; (*thời gian quay vòng toa xe năm xuất phát*)
For $\mathrm{t}:=1$ to $\mathrm{M}[\mathrm{t}]$ do
Begin

$$
\begin{aligned}
& \mathrm{Q}[\mathrm{t}, 1]:=6.2 \\
& \mathrm{Q}[\mathrm{t}, 2]:=6.0 ; \\
& \mathrm{Q}[\mathrm{t}, 3]:=5.8 \\
& \mathrm{Q}[\mathrm{t}, 4]:=5.6 ; \\
& \mathrm{Q}[\mathrm{t}, 5]:=5.4 ; \\
& \mathrm{Q}[\mathrm{t}, 6]:=5.2
\end{aligned}
$$

127.0.0.1 $\underset{180}{\text { downloaded } 60905 . p d f}$ at Fri Mar 23 10:06:33 ICT 2012

End;
$\mathrm{A}[0]:=4050000$; (*khối lượng vận tải - tấn*)
A [1]:=4580000;
A[2]:=5260000;
$\mathrm{A}[3]:=6320000$;
A[4]:=7550000;
A[5]:=9000000;
$\mathrm{P}:=25.5$; (* trọng tải bình quân toa xe^{*})
$\mathrm{D}:=2.9$; (* đơn giá 1 toa xe*)
W:=150; (*hằng số cơ bản đầu tư nâng cấp hạ tầng*)
(*Tìm các céc tợ chuyển trạng thái và véc tơ truy toán*)
$\mathrm{t}:=5$;
For $\mathrm{i}:=1$ to 6 do

Begin

Goc[t, i]:=j; Ngon[t,i]:=1; (* dánh dấu gốc và ngọn vécto*)
$\mathrm{FF}[i, i, \mathrm{Ngon}[\mathrm{t}, \mathrm{i}] \mathrm{]}: 0$; (* giai đoạn này có vectơ truy toán $=0^{*}$)

End:

$\mathrm{t}:=4$:
Al:
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012
$\mathrm{i}:=1 ;\left({ }^{*} \mathrm{i}\right.$ trên $\left.\mathrm{t}^{*}\right)$
A2:
For $\mathrm{j}:=\mathrm{i}$ to $\mathrm{M}[\mathrm{t}]$ do (F_{j} chạy trên $\mathrm{t}+\mathrm{l}^{*}$)
Begin
$\mathrm{Xl}:=\left(\mathrm{A}[\mathrm{t}] /\left(365^{*} \mathrm{p}\right)\right)^{*} \mathrm{Q}[\mathrm{t}, \mathrm{i}] ;$ (*số toa xe năm t*)

$$
\mathrm{X} 2:=\left(\mathrm{A}[\mathrm{t}+1] /\left(365^{*} \mathrm{p}\right)\right)^{*} \mathrm{Q}[\mathrm{t}+1, \mathrm{j}] ;\left({ }^{*}\right. \text { số toa xe }
$$ năm $\mathrm{t}+1^{*}$)

TX[t,i,j]:=Trunc(X2-X1); ((*số toa xe phải mua thêm*)
$\mathrm{G}[\mathrm{t}, \mathrm{i}, \mathrm{j}]:=\mathrm{TX}[\mathrm{t}, \mathrm{i}, \mathrm{j}]{ }^{*} \mathrm{D}$; (*${ }^{*}$ chi phí mua toa $\left.\mathrm{xe}{ }^{*}\right)$ $\mathrm{v}:=\mathrm{Q}[\mathrm{t}, \mathrm{i}]-\mathrm{Q}[\mathrm{t}+1, \mathrm{j}]:$ (*chênh lệch thời gian QVTX*)
$\mathrm{R}[\mathrm{i}, \mathrm{j}]:=\operatorname{Exp}\left((1+\mathrm{v})^{*} \mathrm{Ln}(\mathrm{W})\right)-\mathrm{W} ; \quad\left({ }^{*}\right.$ chi phí nâng cấp hạ tầng*)
$\mathrm{F}[\mathrm{t}, \mathrm{i}, \mathrm{j}]:=\mathrm{G}[\mathrm{t}, \mathrm{i}, \mathrm{j}]+\mathrm{R}[\mathrm{i}, \mathrm{j}] ; \quad$ (* giá trị vectơ chuyển trạng thái*)
$\mathrm{k}:=\mathrm{Ng}$ on $[\mathrm{t}+1, \mathrm{j}]$;
$\mathrm{FF}[\mathrm{t}, \mathrm{i}, \mathrm{j}]:=\mathrm{F}[\mathrm{t}, \mathrm{i}, \mathrm{j}]+\mathrm{FF}[\mathrm{t}+1, \mathrm{j}, \mathrm{k}] ;$ (* giá trị vectơ truy toán*)
End;
$\mathrm{i}:=\mathrm{i}+1$;
If $\mathrm{i}<=\mathrm{M}[1]$ then Goto A2;
$\mathrm{t}=\mathrm{t}-1$;
If $\mathrm{t}=0$ then Goto A1;
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

ClrScr;
Writeln;
Writeln(' Phương án đầu tư Quay vòng toa xe');
Writeln;
$\mathrm{t}:=0$;
$\mathrm{i}:=\operatorname{Goc}[\mathrm{t}, 1] ; \mathrm{j}:=\mathrm{Ngon}[\mathrm{t}, 1]$;
A3:
Writeln('Nām thứ ‘,t+1,' '');
Writeln('QVTX từ ‘,Q[t,i]:4:1,’ nâng cấp đến', $\mathrm{Q}[\mathrm{t}+1, \mathrm{j}]$: 4:1);

Writeln('Só TX mua mới:',TX[t,i,j]:5:0);
Writeln('Chi phí mua TX:',G[t,i,j]:10:2);
Writeln('Chi phí nâng cấp: ‘, $\mathrm{R}[\mathrm{i}, \mathrm{j}]: 10: 2$);
Writcln('Chi phí nām thứ ',t+1,': ‘, F[t.i,j]:10:2);
Writeln('Vectơ truy toán: ‘, FF[t,i,j]: 10:2);
Writeln:
Readln;
$\mathrm{t}:=\mathrm{t}+1$;
If $\mathbf{t}=4$ then Goto A 3 ;
END.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

TÀI LIẸU U THAM KHẢO

[1]- V.M. Akulinhitrev: "Toán ứng dụng trong giao thông vận tải". NXB Giao thông vận tải Maxcơva 1972.
[2] - Nguyễr̃" Văn Bính: "Nghiên cứu các giải pháp đầu tư hiện đại hóa cơ sở hạ tầng vận tải đường sất" Luận án tiến sĩ, Đại họ̣ GTVT Hà Nội - 2002.
[3] - Lý Bách Chấn: "Các phương pháp toán ưng dụng trong giao thông vận tải". NXB Giao thông vận tải Hà Nội-1984.
[4] - Phạm Công Hà: "Trang bị máy xếp dỡ cho các ga hàng hóa và bài toán quy hoạch động". Tạp chí Khoa học kĩ thuật GTVT - 1981.
[5] - Phạm công Hà: "Toán kinh tê" - Tập bài giảng cho các lớp cao học hệ Quản trị kinh doanh, Đại học GTVT-1995.
[6] - Phan Quốc Khánh, Trần Huệ Nương: "Quy hoạch tuyến tính". NXB Giáo dục Hà Nội - 2000.
[7] - Nguyền Vãn Long, Hoàng Vãn Thông, Lương Thái Lê: "Toán rời rạc". NXB Giao thông vận tải Hà Nội - 2006.
[8] - Nguyển Văn Long: "Phương pháp tối ưu". NXB Giao thông vận tải Hà Nội - 2006.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 184
[9] - Quách Tuấn Ngọc: "Ngôn ngữ lập trình Pascal". Đại học Bách khoa Hà Nội - 1992.
[10] - Nguyển Tử Qua: "Toán học trong công tác ké hoạch hóa". NXB Khoa học kĩ thuật Hà Nội - 1985.
[11] - Bùi Thế Tâm, Võ Vãn Tuấn Dũng: "Turbo Pascal 7.0". NXB Thống kê Hà Nội - 1996.
[12] - Trần Vü Thiệu, Bùi Thế Tâm: "Các phương pháp tối ưu hóa". NXB Giao thông vận tải Hà Nội 1998.
[13] - Nguyển Đức Trùy: "Tối ưu hớa kế hoạch vận tải hàng ngày của mạng lưới đường sắt". Luận án tiến sī, Varsava - 1973.
[14] - Tô Cẩm Tú: "Một số phương pháp tối ưu hóa trong kinh tê". NXB Khoa học kī thuật - 1997.
[15] - Lê Trọng Tuấn: "Tổ chức sản xuất kinh doanh vận tải đường sắt trong nền kinh tế thị trường". Luận án tiến sĩ, Đại học GTVT Hà Nội - 2005.

MỤC LUC

Trang
LỜinhà XUẤT BẢN 3
Chương I
BÀI TOÁN QUY HOACH TUYẾN TÍNH DANG TỔNG QUÁT
1.1. Làm quen với bài toán QHTT dạng tổng quát 5
1.1.1. Bài toán "Khẩu phấn ăn" 5
1.1.2. Bài toán thời gian thi cong ngắn nhất 8
1.1.3. Bải toán vận chuyển cát tuên sông 9
1.1.4. Bài toán phân bổ khói lượng thi công dường I
1.2. Một só khái niệm vê bài toán QHTT dạng tổng quát 13
1.2.1. Mô hình toán học 13
1.2.2. Biểu diền bài toán dưới dạng ma trận 15
1.2.3. Các phương án của bài toán QHTT 17
1.2.4. Nghiệm cùa bài toán QHTT hai biến 18
1.3. Giải bài toán QHTT băng phương pháp dơn hình 20
1.3.1. Dạng chính tầc của bài toán QHTT 20
1.3.2. Đưa bài toán về dạng chính tắc 21
1.3.3. Tìm phương án tựa ban dâu 23
1.3.4. Lập bảng dơn hình 27
1.3.5. Số kiểm tra và tiẻu chuẩn tối ưu 31
27.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012
1.3.6. Hoàn thiện phương án 33
1.3.7. Ví dụ giải bài toán trên bảng đơn hình 36
1.3.8. Tóm lược các bước thực hiện bài toán QHTT 39
1.4. Cạp bài toán QHTT dối ngàu 43
1.4.1. Hai bài toán dẫn 43
1.4.2. Mô hình toán học của cặp bài toán dối ngẫu 47
1.4.3. Nguyên lý đối ngẩu 54
1.4.4. Giải bài toán đới ngẩu. 55
1.5. Bài toán quy hoach tuyén tính tham số 58
1.5.1. Bài toán dān 58
1.5.2. Mô hình toán học 59
1.5.3. Phương pháp giài bài toán 60
1.5.4. Giảa bài toán dẫn 61
Chương II
bà̀ TOÁN VẬN TẢI
2.1. Một só bài toán vận tải điển hình 64
2.1.1. Bài toán phân phó́i bê tông nhựa 64
2.1.2. Bài toán bố trí máy thi công 65
2.1.3. Bài toán diểu phới dầu máy xc lựa 66
2.2. Mô hình tóán học của bài toán vạ̀n tài 68
2.2.1. Nội dung bài toán 68
2.2.2. Mô hình toán học 69
2.2.3. Biểu diển bài toán dướ dạng ma trận kép 72
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012 187
2.2.4. Các phương án của bài toán vận tải 74
2.2.5. Dây xích và chu trình 76
2.2.6. Các phương pháp tìm Phương án tựa ban đầu 77
2.2.7. Tiêu chuẳn tối ưu theo phương pháp Thế vị 82
2.2.8. Hoàn thiện phương án 84
2.2.9. Tóm lược trình tự giải bài toán vận tải 86
2.2.10. Giải các bài toán ứng dụng 87
2.3. Bài toán vận tải tham số tuyến tính 95
2.3.1. Mô hình toán học 95
2.3.2. Phưong pháp giải bài toán 96
2.3.3. Giải bài toán úng dụng với $0 \leq t \leq 3$ 97
Chưong III
BÀl TOÁN PHÂN PHỐl
3.1. Bài toán phàn phối và thuạ́t toán thé vị mở rọng 101
3.1.1. Bài toán dần 10I
3.1.2. Mô hình toán học bài toán Phân phối 103
3.1.3. Lập phương án tựa ban đầu 108
3.1.4. Tiĉu chuẩn tối ưu của bài toán phân phối 111
3.1.5. Xác dịnh hệ ıhống số kiểm tra U_{i} và V , 112
3.1.6. Đánh giá phurơng án 114
3.1.7. Hoàn thiện phương án 115
3.2. Bài toán phán phöi tham số 124
3.2.1. Mô hình bàj toán 124
3.2.2. Giải bài toán phân phối tham số 125
Churong IVPHƯONG PHÁP QUY HOACH ĐộNG
4.1. Những nội dung coo bản 128
4.1.1. Bài toán dẩn 128
4.1.2. Giai doạn, trạng thái 131
4.1.3. Véc đơ chuyển trạng thái 132
4.1.4. Véc tơ truy toán (hàm điều khiển) 134
4.1.5. Hàm mục tiêu, các ràng buộc 136
4.1.6. Chiến lược giải bài toán quy hoạch động 136
4.2. Một số bài toán ứng dụng 140
4.2.1. Bài toán đầu ưu thiết bị sàn xuất 140
4.2.2. Bài toán xác dịnh thời gian quay vòng toa xe hợn lý 147
Chương V
LÂP TRİNH GIẢI MỘT SỐ BȦI TOÁN QUY HOACH

1. Nhập Dữ liệu ban đẩu và quản trị dư liệu 154
2. Giảa bài toán 155
3. ln kết quà 156
5.1. Bài toán quy hoạch tuyén tính và bài toán đồi ngāu cüa nó 156
5.1.1 'Tớ chức dữ liệu thông tin. 156
5.1.2. Chương trình con giới thiệu chức nāng (MENU) 158
5.1.3. Chương trình con nhập mới số liệu (NHAP_ MOI) 161
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012
5.1.4. Chương trình con dọc file (DOC_FLLE) 161
5.1.5. Chương trình con nhập bổ sung (NHAP_BS) 161
5.1.6. Chương trình con sửa chữa số liệu (SUA_CHUA) 162
5.1.7. Chương trình con dưa bài toán về dạng chính tắc (CHINH_TAC) 163
5.1.8. Chương trình con tìm phương án tựa ban då̀u (PA-TUA) 164
5.1.9. Chương trình con đánh giá phương án (DANH_GIA_PA) 166
5.1.10. Chương trình con lập phương án mới (LAP_PA_MOI) 166
5.1.11. Chương trình con in kết quả (IN_KQ) 167
5.1.12. Chương trình con bài toán đối ngẩu (DOI_NGAU) 168
5.1.13. Chương trình chính 169
5.2. Lập trình giải bài toán vạ̀n tải. 170
5.2.1. Tổ chức dữ liệu thông tin 170
5.2.2. Chương trình con dưa bài toán về dạng chính tấc (CHINH_TAC) 171
5.2.3. Chương trình con tìm phương án tựa ban đầu (PA_TUA) 172
5.2.4. Chương trình con xác dịnh sô dỉnh của chu trinh (SO_DINH_CT) 173
5.2.5. Chưong trình con lập chu trình (LAP . CT). 174
5.2.6. Chương trình con chống suy biến (CHONG_SB) 175
27.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012
5.2.7. Đánh giá phương án (chương trình con DANH_GIA_PA) 176
5.2.8. Chương trình con hoàn thiện phương án (HOAN_THIEN_PA) 177
5.2.9. Chương trình con in két quä (IN_KQ) 177
5.2.10. Nội dung chương trình chính 177
5.3. Chuong trình giải bài toán tìm phưong án quay vòng toa xe tôi tuu theo phưong plaíp quy hoạch dọ̀ng 178
TÀI LIẸU THAM KHẢO 184

PGS.TS. PHAM CÔNG HÀ

TOÁN QUY HOACH

ỮNG DỤNG TRONG GIAO THÔNG VÂ̂N TẢI

Chịu trách nhiệm xuất bản LÊ TỬGIANG

Biên tập: TS. NGUYỄN VÃN LONG VŨ VĂN TỚl
Sửa bài:
VŨ VĀN TỚI
Ché bản:
HỒNG ANH
Vẽ bìa:
VUƠNG THẾ HÙNG

$$
\text { MS } \frac{519(6 \mathrm{~V})}{\text { GTVT }-06} 43 / 01-07
$$

NHÀ XUẤT BẢN GIAO THÔNG VẬN TẢI
 80B Trần Hưng Đạo - Hà Nội

Điẹn thoạ: 04.9423346-8221627 * Fax: 04.8224784

In 1020 cuôn kho $13 \times 19 \mathrm{~cm}$ tai Cong ty in Gian thong - NXB GTVT. Quyêt dịnli Xuăi ban số: 151-2006/CXB/43-313-05/G']V[.

Il xong và nọp lưu chiểu tháng 1/2007.
127.0.0.1 downloaded 60905.pdf at Fri Mar 23 10:06:33 ICT 2012

NHÀ XUẤT BẢN GIAO THÔNG VẬN TẢI 80B Trần Hưng Đạo - Hà Nội ĐТ: 04.9423345-Fax: 04.8224784

Tim Đọc

- Từ điển thuật ngữ công trình giao thông Việt - Hán - Anh
* Thiết kế chi tiết máy trên máy vi tính
- Sử dụng phần mềm Autodesk Softdesk trong thiết kế đường ôtô
- Xây dựng mặt đường ôtô
- Chỉ dẫn đường bộ Việt Nam

Tập I: Đường quốc lộ

